Is there a way to improve this fitting?
dat={{0, 0.183453}, {10, 0.18317}, {20, 0.182312}, {30, 0.180844}, {40,
0.178713}, {50, 0.175843}, {60, 0.172141}, {70, 0.167506}, {80,
0.161841}, {90, 0.155074}, {100, 0.147198}, {110, 0.138308}, {120,
0.128652}, {130, 0.118654}, {140, 0.108915}, {150, 0.100168}, {160,
0.093188}, {170, 0.0886728}, {180, 0.0871093}, {190,
0.0886728}, {200, 0.093188}, {210, 0.100168}, {220, 0.108915}, {230,
0.118654}, {240, 0.128652}, {250, 0.138308}, {260, 0.147198}, {270,
0.155074}, {280, 0.161841}, {290, 0.167506}, {300, 0.172141}, {310,
0.175843}, {320, 0.178713}, {330, 0.180844}, {340, 0.182312}, {350,
0.18317}, {360, 0.183453}};
Block[{\[Theta] = 40},
fit = NonlinearModelFit[
dat, {( A Cos[\[Theta] Degree] +
B Sin[\[Theta] Degree] Cos[\[Theta] Degree] Cos[\[Phi] Degree]),
A > 0, B > 0 },
{{A, 0}, {B, 0}}, \[Phi]];
ListLinePlot[{Table[{\[Phi], (( A Cos[\[Theta] Degree] +
B Sin[\[Theta] Degree] Cos[\[Theta] Degree] Cos[\[Phi] \
Degree])) /. fit["BestFitParameters"]}, {\[Phi], 0, 360, 10}], dat},
PlotStyle -> {Gray, Red}, PlotLegends -> {"fit", "dat"}]]





{190, 0}does not correspond to yourdatgraph. $\endgroup$a Ahas no sense. $\endgroup$NonlinearModelFit(andLinearModelFit) is not the problem. You need a better model (as shown in the current two answers). Is there some physical model that is indicated? If not, a better fit is just a better description of the data rather than an explanation of the data. Also, you really only have half of the observations presented which means that any standard errors are underestimated. The fitting should just use the real data and not any of the duplicated data. $\endgroup$