From the Fourier transform I know that if $x(t)$ is a real function then $$X(j\omega)=X^*(-j\omega)$$ and that $$|X(j\omega)|=|X(-j\omega)|$$ $$\angle{X(j\omega)}=-\angle{X(-j\omega)}$$ My question is whether the magnitude plot is always even, for any complex function $x(t)$ , since $$|X(j\omega)|=\sqrt{a(\omega)^2+b(\omega)^2}$$ for $X(j\omega)=a(\omega)+j b(\omega)$
So, regardless of whether $a(\omega), b(\omega)$ be even or odd, can the magnitude plot be always even function of $\omega$.
I also have similar dilemma for the phase function $$\angle{X(j\omega)}=tan^{-1}\Biggr(\frac{b(\omega)}{a(\omega)}\Biggr)$$