Rather than defining new macros with several arguments, I propose a different syntax, where the second mandatory argument contains the format of the summands, with #1 standing for the current summation index.
The *-form of \xrepsum will print the full expression without ellipsis.
\documentclass{article}
\usepackage{amsmath}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\xrepsum}{sO{3}mm}
{% #1 = star; if present, print the full summation
% #2 = optional number of starting summands
% #3 = final number
% #4 = summands
\cs_set_protected:Nn \__mascolo_repsum_summand:n { #4 }
\cs_set_protected:Nn \__mascolo_repsum_summand_pre:n { + #4 }
\cs_set_protected:Nn \__mascolo_repsum_summand_post:n { #4 + }
\bool_lazy_or:nnTF { #1 } { \int_compare_p:n { #3 - #2 < 3 } }
{% print the full summation either because we want it (*-form) or
% there are too few summands
\__mascolo_repsum_summand:n { 1 }
\int_step_function:nnN { 2 } { #3 } \__mascolo_repsum_summand_pre:n
}
{
\int_step_function:nN { #2 } \__mascolo_repsum_summand_post:n
\dotsb
\int_step_function:nnN { #3 - 1} { #3 } \__mascolo_repsum_summand_pre:n
}
}
\ExplSyntaxOff
\begin{document}
Full summation: $\xrepsum*{9}{F_{#1}u_{#1}}$
First test: $\xrepsum{9}{F_{#1}u_{#1}}$
Second test: $\xrepsum[2]{6}{F_{#1}u_{#1}}$
Third test: $\xrepsum{5}{F_{#1}u_{x#1}}$
Fourth test: $\xrepsum{3}{F^{#1}u_{#1}}$
Fifth test: $\xrepsum{2}{F_{#1}u_{#1x}}$
Sixth test: $\xrepsum{1}{F_{#1}u_{#1}}$
The CUF Refined theory expands the summation as
\begin{equation}
u=\xrepsum{4}{F_{#1}u_{x#1}}=F_\tau u_\tau
\end{equation}
where the last expression exploits the Einstein notation. If we include nodes
\begin{equation}
u=\xrepsum{4}{F_{#1}N_{#1}u_{x#1}}=F_\tau N_i u_{\tau i}
\end{equation}
\end{document}

As an aside, avoid blank lines before displayed equations: they are always wrong. A blank line after displayed equation should be added only if the following text starts a new paragraph.
[]not{}