So I've solved this problem, but I need your opinion if what I did is best practice.
A simple class holds a vector of unique_ptrs to order objects. I will explain the member variable null_unique below.
class order_collection {
typedef std::unique_ptr<order> ord_ptr;
typedef std::vector<ord_ptr> ord_ptr_vec;
ord_ptr_vec orders;
ord_ptr null_unique;
public:
...
const ord_ptr & find_order(std::string);
....
So I need the users of this class to get access to the order unique_ptr if found. However I'm not going to move the object out of the vector so I'm returning the unique_ptr as const ref. My implementation of the find_order method:
const order_collection::ord_ptr & order_collection::find_order(std::string id) {
auto it = std::find_if(orders.begin(),orders.end(),
[&](const order_collection::ord_ptr & sptr) {
return sptr->getId() == id;
});
if (it == orders.end())
return null_unique; // can't return nullptr here
return *it;
}
Since I'm returning by reference I can't return a nullptr. If I try to do so, I get warning : returning reference to a temporary. And if nothing is found the program crashes. So I added a unique_ptr<order> member variable called null_unique and I return it when find doesn't find an order. This solves the problem and warning is gone and doesn't crash when no order is found.
However I'm doubting my solution as it make my class ugly. Is this the best practice for handling this situation?
return null_unique;withreturn nullptr;.orders are memory-managed.std::optionalapproach, though.