1 #define USE_THE_REPOSITORY_VARIABLE
2 #define DISABLE_SIGN_COMPARE_WARNINGS
4 #include "git-compat-util.h"
8 #include "read-cache-ll.h"
9 #include "split-index.h"
11 #include "ewah/ewok.h"
13 struct split_index
*init_split_index(struct index_state
*istate
)
15 if (!istate
->split_index
) {
16 if (istate
->sparse_index
)
17 die(_("cannot use split index with a sparse index"));
19 CALLOC_ARRAY(istate
->split_index
, 1);
20 istate
->split_index
->refcount
= 1;
22 return istate
->split_index
;
25 int read_link_extension(struct index_state
*istate
,
26 const void *data_
, unsigned long sz
)
28 const unsigned char *data
= data_
;
29 struct split_index
*si
;
32 if (sz
< the_hash_algo
->rawsz
)
33 return error("corrupt link extension (too short)");
34 si
= init_split_index(istate
);
35 oidread(&si
->base_oid
, data
, the_repository
->hash_algo
);
36 data
+= the_hash_algo
->rawsz
;
37 sz
-= the_hash_algo
->rawsz
;
40 si
->delete_bitmap
= ewah_new();
41 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
43 return error("corrupt delete bitmap in link extension");
46 si
->replace_bitmap
= ewah_new();
47 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
49 return error("corrupt replace bitmap in link extension");
51 return error("garbage at the end of link extension");
55 int write_link_extension(struct strbuf
*sb
,
56 struct index_state
*istate
)
58 struct split_index
*si
= istate
->split_index
;
59 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
60 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
62 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
63 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
67 static void mark_base_index_entries(struct index_state
*base
)
71 * To keep track of the shared entries between
72 * istate->base->cache[] and istate->cache[], base entry
73 * position is stored in each base entry. All positions start
74 * from 1 instead of 0, which is reserved to say "this is a new
77 for (i
= 0; i
< base
->cache_nr
; i
++)
78 base
->cache
[i
]->index
= i
+ 1;
81 void move_cache_to_base_index(struct index_state
*istate
)
83 struct split_index
*si
= istate
->split_index
;
87 * If there was a previous base index, then transfer ownership of allocated
88 * entries to the parent index.
91 si
->base
->ce_mem_pool
) {
93 if (!istate
->ce_mem_pool
) {
94 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
95 mem_pool_init(istate
->ce_mem_pool
, 0);
98 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
102 release_index(si
->base
);
104 ALLOC_ARRAY(si
->base
, 1);
106 index_state_init(si
->base
, istate
->repo
);
107 si
->base
->version
= istate
->version
;
108 /* zero timestamp disables racy test in ce_write_index() */
109 si
->base
->timestamp
= istate
->timestamp
;
110 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
111 si
->base
->cache_nr
= istate
->cache_nr
;
114 * The mem_pool needs to move with the allocated entries.
116 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
117 istate
->ce_mem_pool
= NULL
;
119 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
120 mark_base_index_entries(si
->base
);
121 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
122 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
125 static void mark_entry_for_delete(size_t pos
, void *data
)
127 struct index_state
*istate
= data
;
128 if (pos
>= istate
->cache_nr
)
129 die("position for delete %d exceeds base index size %d",
130 (int)pos
, istate
->cache_nr
);
131 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
132 istate
->split_index
->nr_deletions
++;
135 static void replace_entry(size_t pos
, void *data
)
137 struct index_state
*istate
= data
;
138 struct split_index
*si
= istate
->split_index
;
139 struct cache_entry
*dst
, *src
;
141 if (pos
>= istate
->cache_nr
)
142 die("position for replacement %d exceeds base index size %d",
143 (int)pos
, istate
->cache_nr
);
144 if (si
->nr_replacements
>= si
->saved_cache_nr
)
145 die("too many replacements (%d vs %d)",
146 si
->nr_replacements
, si
->saved_cache_nr
);
147 dst
= istate
->cache
[pos
];
148 if (dst
->ce_flags
& CE_REMOVE
)
149 die("entry %d is marked as both replaced and deleted",
151 src
= si
->saved_cache
[si
->nr_replacements
];
153 die("corrupt link extension, entry %d should have "
154 "zero length name", (int)pos
);
155 src
->index
= pos
+ 1;
156 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
157 src
->ce_namelen
= dst
->ce_namelen
;
158 copy_cache_entry(dst
, src
);
159 discard_cache_entry(src
);
160 si
->nr_replacements
++;
163 void merge_base_index(struct index_state
*istate
)
165 struct split_index
*si
= istate
->split_index
;
168 mark_base_index_entries(si
->base
);
170 si
->saved_cache
= istate
->cache
;
171 si
->saved_cache_nr
= istate
->cache_nr
;
172 istate
->cache_nr
= si
->base
->cache_nr
;
173 istate
->cache
= NULL
;
174 istate
->cache_alloc
= 0;
175 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
176 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
178 si
->nr_deletions
= 0;
179 si
->nr_replacements
= 0;
180 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
181 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
182 if (si
->nr_deletions
)
183 remove_marked_cache_entries(istate
, 0);
185 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
186 if (!ce_namelen(si
->saved_cache
[i
]))
187 die("corrupt link extension, entry %d should "
188 "have non-zero length name", i
);
189 add_index_entry(istate
, si
->saved_cache
[i
],
190 ADD_CACHE_OK_TO_ADD
|
191 ADD_CACHE_KEEP_CACHE_TREE
|
193 * we may have to replay what
194 * merge-recursive.c:update_stages()
195 * does, which has this flag on
197 ADD_CACHE_SKIP_DFCHECK
);
198 si
->saved_cache
[i
] = NULL
;
201 ewah_free(si
->delete_bitmap
);
202 ewah_free(si
->replace_bitmap
);
203 FREE_AND_NULL(si
->saved_cache
);
204 si
->delete_bitmap
= NULL
;
205 si
->replace_bitmap
= NULL
;
206 si
->saved_cache_nr
= 0;
210 * Compare most of the fields in two cache entries, i.e. all except the
211 * hashmap_entry and the name.
213 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
215 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
217 unsigned int ce_flags
= a
->ce_flags
;
218 unsigned int base_flags
= b
->ce_flags
;
221 /* only on-disk flags matter */
222 a
->ce_flags
&= ondisk_flags
;
223 b
->ce_flags
&= ondisk_flags
;
224 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
225 offsetof(struct cache_entry
, name
) -
226 offsetof(struct cache_entry
, oid
)) ||
227 !oideq(&a
->oid
, &b
->oid
);
228 a
->ce_flags
= ce_flags
;
229 b
->ce_flags
= base_flags
;
234 void prepare_to_write_split_index(struct index_state
*istate
)
236 struct split_index
*si
= init_split_index(istate
);
237 struct cache_entry
**entries
= NULL
, *ce
;
238 int i
, nr_entries
= 0, nr_alloc
= 0;
240 si
->delete_bitmap
= ewah_new();
241 si
->replace_bitmap
= ewah_new();
244 /* Go through istate->cache[] and mark CE_MATCHED to
245 * entry with positive index. We'll go through
246 * base->cache[] later to delete all entries in base
247 * that are not marked with either CE_MATCHED or
248 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
249 * duplicate, deduplicate it.
251 for (i
= 0; i
< istate
->cache_nr
; i
++) {
252 struct cache_entry
*base
;
253 ce
= istate
->cache
[i
];
256 * During simple update index operations this
257 * is a cache entry that is not present in
258 * the shared index. It will be added to the
261 * However, it might also represent a file
262 * that already has a cache entry in the
263 * shared index, but a new index has just
264 * been constructed by unpack_trees(), and
265 * this entry now refers to different content
266 * than what was recorded in the original
267 * index, e.g. during 'read-tree -m HEAD^' or
268 * 'checkout HEAD^'. In this case the
269 * original entry in the shared index will be
270 * marked as deleted, and this entry will be
271 * added to the split index.
275 if (ce
->index
> si
->base
->cache_nr
) {
276 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
277 ce
->index
, si
->base
->cache_nr
);
279 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
280 base
= si
->base
->cache
[ce
->index
- 1];
282 /* The entry is present in the shared index. */
283 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
285 * Already marked for inclusion in
286 * the split index, either because
287 * the corresponding file was
288 * modified and the cached stat data
289 * was refreshed, or because there
290 * is already a replacement entry in
292 * Nothing more to do here.
294 } else if (!ce_uptodate(ce
) &&
295 is_racy_timestamp(istate
, ce
)) {
297 * A racily clean cache entry stored
298 * only in the shared index: it must
299 * be added to the split index, so
300 * the subsequent do_write_index()
301 * can smudge its stat data.
303 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
306 * The entry is only present in the
307 * shared index and it was not
309 * Just leave it there.
314 if (ce
->ce_namelen
!= base
->ce_namelen
||
315 strcmp(ce
->name
, base
->name
)) {
320 * This is the copy of a cache entry that is present
321 * in the shared index, created by unpack_trees()
322 * while it constructed a new index.
324 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
326 * Already marked for inclusion in the split
327 * index, either because the corresponding
328 * file was modified and the cached stat data
329 * was refreshed, or because the original
330 * entry already had a replacement entry in
334 } else if (!ce_uptodate(ce
) &&
335 is_racy_timestamp(istate
, ce
)) {
337 * A copy of a racily clean cache entry from
338 * the shared index. It must be added to
339 * the split index, so the subsequent
340 * do_write_index() can smudge its stat data.
342 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
345 * Thoroughly compare the cached data to see
346 * whether it should be marked for inclusion
347 * in the split index.
349 * This comparison might be unnecessary, as
350 * code paths modifying the cached data do
351 * set CE_UPDATE_IN_BASE as well.
353 if (compare_ce_content(ce
, base
))
354 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
356 discard_cache_entry(base
);
357 si
->base
->cache
[ce
->index
- 1] = ce
;
359 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
360 ce
= si
->base
->cache
[i
];
361 if ((ce
->ce_flags
& CE_REMOVE
) ||
362 !(ce
->ce_flags
& CE_MATCHED
))
363 ewah_set(si
->delete_bitmap
, i
);
364 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
365 ewah_set(si
->replace_bitmap
, i
);
366 ce
->ce_flags
|= CE_STRIP_NAME
;
367 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
368 entries
[nr_entries
++] = ce
;
370 if (is_null_oid(&ce
->oid
))
371 istate
->drop_cache_tree
= 1;
375 for (i
= 0; i
< istate
->cache_nr
; i
++) {
376 ce
= istate
->cache
[i
];
377 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
378 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
379 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
380 entries
[nr_entries
++] = ce
;
382 ce
->ce_flags
&= ~CE_MATCHED
;
386 * take cache[] out temporarily, put entries[] in its place
389 si
->saved_cache
= istate
->cache
;
390 si
->saved_cache_nr
= istate
->cache_nr
;
391 istate
->cache
= entries
;
392 istate
->cache_nr
= nr_entries
;
395 void finish_writing_split_index(struct index_state
*istate
)
397 struct split_index
*si
= init_split_index(istate
);
399 ewah_free(si
->delete_bitmap
);
400 ewah_free(si
->replace_bitmap
);
401 si
->delete_bitmap
= NULL
;
402 si
->replace_bitmap
= NULL
;
404 istate
->cache
= si
->saved_cache
;
405 istate
->cache_nr
= si
->saved_cache_nr
;
408 void discard_split_index(struct index_state
*istate
)
410 struct split_index
*si
= istate
->split_index
;
413 istate
->split_index
= NULL
;
418 discard_index(si
->base
);
424 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
427 istate
->split_index
&&
428 istate
->split_index
->base
&&
429 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
430 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
431 ce
->ce_flags
|= CE_REMOVE
;
433 discard_cache_entry(ce
);
436 void replace_index_entry_in_base(struct index_state
*istate
,
437 struct cache_entry
*old_entry
,
438 struct cache_entry
*new_entry
)
440 if (old_entry
->index
&&
441 istate
->split_index
&&
442 istate
->split_index
->base
&&
443 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
444 new_entry
->index
= old_entry
->index
;
445 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
446 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
447 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
451 void add_split_index(struct index_state
*istate
)
453 if (!istate
->split_index
) {
454 init_split_index(istate
);
455 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
459 void remove_split_index(struct index_state
*istate
)
461 if (istate
->split_index
) {
462 if (istate
->split_index
->base
) {
464 * When removing the split index, we need to move
465 * ownership of the mem_pool associated with the
466 * base index to the main index. There may be cache entries
467 * allocated from the base's memory pool that are shared with
470 mem_pool_combine(istate
->ce_mem_pool
,
471 istate
->split_index
->base
->ce_mem_pool
);
474 * The split index no longer owns the mem_pool backing
475 * its cache array. As we are discarding this index,
476 * mark the index as having no cache entries, so it
477 * will not attempt to clean up the cache entries or
480 istate
->split_index
->base
->cache_nr
= 0;
484 * We can discard the split index because its
485 * memory pool has been incorporated into the
486 * memory pool associated with the the_index.
488 discard_split_index(istate
);
490 istate
->cache_changed
|= SOMETHING_CHANGED
;