Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • Compute Services
  • System Modeler
  • Finance Platform
  • Wolfram|Alpha Notebook Edition
  • Application Server
  • Enterprise Private Cloud
  • Wolfram Engine
  • Wolfram Player
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

Wolfram Consulting

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Notebook Assistant + LLM Kit
    • Compute Services
    • System Modeler
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Application Server
    • Enterprise Private Cloud
    • Wolfram Engine
    • Wolfram Player
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
Compile
  • See Also
    • CompiledFunction
    • CompilationOptions
    • CompilationTarget
    • Parallelization
    • RuntimeAttributes
    • RuntimeOptions
    • Dispatch
    • Function
    • InterpolatingFunction
    • CForm
  • Related Guides
    • Time Measurement & Optimization
    • Parallel Computing
    • Code Compilation
    • Calling External Programs
    • Tuning & Debugging
  • Tech Notes
    • Generating C and Fortran Expressions
    • Compiling Wolfram Language Expressions
    • The Wolfram Language Compiler User Guide
    • C Code Generation User Guide
    • See Also
      • CompiledFunction
      • CompilationOptions
      • CompilationTarget
      • Parallelization
      • RuntimeAttributes
      • RuntimeOptions
      • Dispatch
      • Function
      • InterpolatingFunction
      • CForm
    • Related Guides
      • Time Measurement & Optimization
      • Parallel Computing
      • Code Compilation
      • Calling External Programs
      • Tuning & Debugging
    • Tech Notes
      • Generating C and Fortran Expressions
      • Compiling Wolfram Language Expressions
      • The Wolfram Language Compiler User Guide
      • C Code Generation User Guide

Compile[{x1,x2,…},expr]

creates a compiled function that evaluates expr assuming numerical values of the xi.

Compile[{{x1,t1},…},expr]

assumes that xi is of a type that matches ti.

Compile[{{x1,t1,n1},…},expr]

assumes that xi is a rank ni array of objects, each of a type that matches ti.

Compile[vars,expr,{{p1,pt1},…}]

assumes that subexpressions in expr that match pi are of types that match pti.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
CompilationOptions  
CompilationTarget  
Parallelization  
RuntimeAttributes  
RuntimeOptions  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • CompiledFunction
    • CompilationOptions
    • CompilationTarget
    • Parallelization
    • RuntimeAttributes
    • RuntimeOptions
    • Dispatch
    • Function
    • InterpolatingFunction
    • CForm
  • Related Guides
    • Time Measurement & Optimization
    • Parallel Computing
    • Code Compilation
    • Calling External Programs
    • Tuning & Debugging
  • Tech Notes
    • Generating C and Fortran Expressions
    • Compiling Wolfram Language Expressions
    • The Wolfram Language Compiler User Guide
    • C Code Generation User Guide
    • See Also
      • CompiledFunction
      • CompilationOptions
      • CompilationTarget
      • Parallelization
      • RuntimeAttributes
      • RuntimeOptions
      • Dispatch
      • Function
      • InterpolatingFunction
      • CForm
    • Related Guides
      • Time Measurement & Optimization
      • Parallel Computing
      • Code Compilation
      • Calling External Programs
      • Tuning & Debugging
    • Tech Notes
      • Generating C and Fortran Expressions
      • Compiling Wolfram Language Expressions
      • The Wolfram Language Compiler User Guide
      • C Code Generation User Guide

Compile

Compile[{x1,x2,…},expr]

creates a compiled function that evaluates expr assuming numerical values of the xi.

Compile[{{x1,t1},…},expr]

assumes that xi is of a type that matches ti.

Compile[{{x1,t1,n1},…},expr]

assumes that xi is a rank ni array of objects, each of a type that matches ti.

Compile[vars,expr,{{p1,pt1},…}]

assumes that subexpressions in expr that match pi are of types that match pti.

Details and Options

  • The types handled by Compile are:
  • _Integermachine‐size integer
    _Realmachine‐precision approximate real number (default)
    _Complexmachine‐precision approximate complex number
    True | Falselogical variable
  • Nested lists given as input to a compiled function must be full arrays of numbers.
  • Compile handles numerical functions, matrix operations, procedural programming constructs, list manipulation functions, and functional programming constructs, etc.
  • Compile generates a CompiledFunction object.
  • Compiled code does not handle numerical precision and local variables in the same way as ordinary Wolfram Language code.
  • If a compiled function cannot be evaluated with particular arguments using compiled code, ordinary Wolfram Language code is used instead.
  • Ordinary Wolfram Language code can be called from within compiled code. Results obtained from the Wolfram Language code are assumed to be approximate real numbers, unless specified otherwise by the third argument of Compile.
  • The number of times and the order in which objects are evaluated by Compile may be different from ordinary Wolfram Language code.
  • Compile has attribute HoldAll, and does not by default do any evaluation before compilation.
  • You can use Compile[…,Evaluate[expr]] to specify that expr should be evaluated symbolically before compilation.
  • The following options can be given:
  • CompilationOptions Automaticoptions for the compilation process
    CompilationTarget $CompilationTargetthe target runtime for code generation
    Parallelization Automaticparallel controls for compiled function execution
    RuntimeAttributes {}evaluation attributes for the compiled function
    RuntimeOptions Automaticruntime options for the compiled function

Examples

open all close all

Basic Examples  (1)

Compile the function Sin[x]+x^2-1/(1-x) for machine real x:

The CompiledFunction evaluates with machine numbers:

Plot the compiled function:

Scope  (1)

Compile the function to take Newton iterations for and identify the nearest root:

Plot the basins of attraction for the three roots:

Options  (9)

CompilationOptions  (1)

The default setting of Automatic generates more efficient code by avoiding computing the same result more than once:

When the optimization level is reduced, less efficient code is generated:

CompilationTarget  (2)

This generates C code and links it back in for execution:

This is a larger example that demonstrates the speed advantages of C code generation:

The default operation runs more slowly:

Parallelization  (2)

Listable compiled functions can execute in parallel using threads:

This shows the operation running sequentially:

Typically, $ProcessorCount is used to determine how many threads to be used:

You can combine parallel operations with C code generation to get even faster operation:

RuntimeAttributes  (3)

This creates a listable compiled function:

It operates on a single input in normal fashion:

When the arguments include a list that does not match the input specification, it threads over that argument:

If there is a branch, listability needs a function to be defined, as shown below using Function:

A listable compiled function is equivalent but executes faster:

A listable compiled function can run in parallel, giving an acceleration on multicore machines:

Using the listable attribute is typically faster than invoking CompiledFunction many times:

Using parallelization can give an even greater speedup:

The results are identical:

A detailed plot of the basins of attraction for Newton's method for :

RuntimeOptions  (1)

Typically, integer arithmetic overflow is caught and the computation switches to use bignums:

Turning off overflow checking makes for faster execution, but the result can be incorrect:

Possible Issues  (1)

With the default setting for RuntimeOptions intermediate overflow may be missed:

With the "Quality" setting, intermediate terms are tested for overflow:

Neat Examples  (1)

Perlin noise is a common algorithm used to generate procedural textures:

This defines the parameters to the Perlin noise function and uses the Perlin function to generate a landscape procedural texture:

The same noise function, with different parameters and color set, can simulate wood grain:

You can apply textures to 3D objects:

See Also

CompiledFunction  CompilationOptions  CompilationTarget  Parallelization  RuntimeAttributes  RuntimeOptions  Dispatch  Function  InterpolatingFunction  CForm

Tech Notes

    ▪
  • Generating C and Fortran Expressions
  • ▪
  • Compiling Wolfram Language Expressions
  • ▪
  • The Wolfram Language Compiler User Guide
  • ▪
  • C Code Generation User Guide

Related Guides

    ▪
  • Time Measurement & Optimization
  • ▪
  • Parallel Computing
  • ▪
  • Code Compilation
  • ▪
  • Calling External Programs
  • ▪
  • Tuning & Debugging

Related Links

  • An Elementary Introduction to the Wolfram Language : Writing Good Code
  • NKS|Online  (A New Kind of Science)

History

Introduced in 1991 (2.0) | Updated in 1996 (3.0) ▪ 2010 (8.0)

Wolfram Research (1991), Compile, Wolfram Language function, https://reference.wolfram.com/language/ref/Compile.html (updated 2010).

Text

Wolfram Research (1991), Compile, Wolfram Language function, https://reference.wolfram.com/language/ref/Compile.html (updated 2010).

CMS

Wolfram Language. 1991. "Compile." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2010. https://reference.wolfram.com/language/ref/Compile.html.

APA

Wolfram Language. (1991). Compile. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Compile.html

BibTeX

@misc{reference.wolfram_2025_compile, author="Wolfram Research", title="{Compile}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/Compile.html}", note=[Accessed: 01-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_compile, organization={Wolfram Research}, title={Compile}, year={2010}, url={https://reference.wolfram.com/language/ref/Compile.html}, note=[Accessed: 01-February-2026]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • Compute Services
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Engine
  • Wolfram Player

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2026 Wolfram
© 2026 Wolfram | Legal & Privacy Policy |
English