In the path integral of the bosonic string, we fix the gauge by setting the metric $ h $ to a reference metric $ \hat{h} $. A common choice is the conformal gauge: \begin{equation} h_{\alpha \beta} \longrightarrow \hat{h}_{\alpha \beta} = e^{2\phi(\sigma)} \eta_{\alpha \beta}, \end{equation} or, when the entire worldsheet has topological obstructions that do not allow a flat metric: \begin{equation} h_{\alpha \beta} \longrightarrow \hat{h}_{\alpha \beta} = e^{2\phi(\sigma)} g_{\alpha \beta}. \end{equation} Here $ g $ is some fixed metric. This appears in the string theory books by BLT (see Eq.~(3.66)) and Polchinski (before Eq.~(3.3.24)).
Why don't we use a further Weyl transformation to remove the factor $ e^{2\phi(\sigma)} $ and directly fix the metric to $\eta_{\alpha \beta} $ or $ g_{\alpha \beta} $?