US5767854A - Multidimensional data display and manipulation system and methods for using same - Google Patents
Multidimensional data display and manipulation system and methods for using same Download PDFInfo
- Publication number
- US5767854A US5767854A US08/721,899 US72189996A US5767854A US 5767854 A US5767854 A US 5767854A US 72189996 A US72189996 A US 72189996A US 5767854 A US5767854 A US 5767854A
- Authority
- US
- United States
- Prior art keywords
- data
- schema
- gon
- user
- gonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000007787 solid Substances 0.000 claims abstract description 25
- 238000004458 analytical method Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 230000008676 import Effects 0.000 claims description 4
- 239000013543 active substance Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 230000000873 masking effect Effects 0.000 claims 1
- 238000013468 resource allocation Methods 0.000 claims 1
- 238000013523 data management Methods 0.000 abstract description 5
- 238000010276 construction Methods 0.000 abstract description 3
- 238000007726 management method Methods 0.000 abstract 1
- 101100393235 Caenorhabditis elegans gon-1 gene Proteins 0.000 description 79
- 230000006870 function Effects 0.000 description 14
- 230000000737 periodic effect Effects 0.000 description 12
- 230000009471 action Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 101100482711 Caenorhabditis elegans gon-2 gene Proteins 0.000 description 7
- 240000004244 Cucurbita moschata Species 0.000 description 7
- 235000009854 Cucurbita moschata Nutrition 0.000 description 7
- 235000009852 Cucurbita pepo Nutrition 0.000 description 7
- 235000020354 squash Nutrition 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 5
- 239000004035 construction material Substances 0.000 description 4
- 230000002354 daily effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010985 leather Substances 0.000 description 4
- 241000234282 Allium Species 0.000 description 3
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229940102240 option 2 Drugs 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004141 dimensional analysis Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013079 data visualisation Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000013515 script Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/0485—Scrolling or panning
- G06F3/04855—Interaction with scrollbars
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/242—Query formulation
- G06F16/2428—Query predicate definition using graphical user interfaces, including menus and forms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/248—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/283—Multi-dimensional databases or data warehouses, e.g. MOLAP or ROLAP
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/048—Indexing scheme relating to G06F3/048
- G06F2203/04802—3D-info-object: information is displayed on the internal or external surface of a three dimensional manipulable object, e.g. on the faces of a cube that can be rotated by the user
Definitions
- This present invention relates to a computer, a computer memory or a digital storage device having stored therein or thereon a multi-dimensional display and manipulation system for the display, analysis and manipulation of multi-dimensional data.
- the present invention relates of a computer, a computer memory, or a digital storage device having stored thereon or therein a multi-dimensional display and manipulation system includes a user interface that displays multi-dimensional data in the form at least a first multi-sided geometrical object where at least a side of the first object has a second multi-sided geometrical object associated therewith or displays periodic data in the form of a periodical geometrical object having associated therewith at least one multi-sided object at each segment of the periodic object and a data manipulation subsystem which includes means for creating, storing, updating, deleting, modifying, and analyzing multi-sided data objects.
- the current multidimensional technology uses the cube paradigm. Since a cube is a six-sided geometric object, it inherently imposes limitations on dimensions that can be represented by a singleton cube. Additionally, the technology also lacks the concept of the face of the cube itself containing other geometric shape(s). Thus, it would represent an advancement in the art to have a computer, a memory associated with a computer or a direct access storage device with a program encoded therein which is capable a fast, efficient and visually understandable retrieval, display, manipulation, analysis and storage of multi-dimensional data.
- This invention provides a computer including a memory, at least one direct access storage device, at least one display device, and an electronic and/or digital communication system.
- the memory and/or storage device include at least one operating system, optionally at least one database system, and a multi-dimensional display and manipulation system.
- the operating system is any operating system well known in the art, but is preferably a windowing operating system.
- the database is any database system well known in the art.
- the multi-dimensional display and manipulation system includes an user interface and a multi-dimensional data object subsystem where the subsystem includes means for creating, populating, updating, manipulating, storing, retrieving, modifying and analyzing multi-dimensional data objects and the user interface includes means for displaying and graphically manipulating the multi-dimensional data objects in a window defined on a display device.
- the multi-dimensional data objects include multi-sided geometrical objects having a side for each dimensionality of the data to be represented by the data object.
- Each side of a given multi-sided geometrical object can be a single data value or an embedded multi-geometrical object.
- the data objects can display not only data having a single hierarchical level, but can simultaneously data having any number of hierarchical levels such as the structure of directors defined on a direct access memory device (disk) in the form of multi-sided geometrical constructs.
- the data objects are similar to carrousels within carrousels.
- the present invention also includes a method implemented on a computer or stored in a digital readable format including the steps of creating multi-sided data objects, populating multi-sided data objects with data, manipulating the objects and the data contained therein, displaying the objects, retrieving, storing, deleting, updating, and modifying the objects and analyzing the objects for data trends or for report generation.
- the present invention also provides a user interface and data management system that allow a user to more efficiently visualize, display, manipulate, and analyze multi-dimensional data.
- the user interface and data management system is designed to be implemented on a single computer and/or on a computer network including all type of computers from mainframes to PC's.
- the user interface and data management system work preferably in a computer environment using a windowing operating system.
- the present user interface and data management system will sometimes be referred to by the acronym MAGIC.
- FIG. 1 shows a seven-sided (7-gon or heptagon), 3D data object or carrousel having x sections;
- FIG. 2 shows an eight-sided carrousel (octagon or 8-gon) where a first side or face is a six-sided carrousel (hexagon or 6-gon) and a second side is a four-sided carrousel (square or 4-gon);
- FIG. 3 shows an onion having layers
- FIG. 4 shows a stack of onions forming a tower like structure
- FIG. 5 depicts three n-gons having relationships defined between the data contained within at least one side of two n-gons
- FIGS. 6a-b depict a top outside perspective view and a top inside perspective view of a 3D hexagonal data object, respectively;
- FIG. 7 is a schematic flow chart of the steps performed by the Meta Data Manager of the present invention.
- FIG. 8 is a schematic flow chart of the steps performed by the Schema Synchronization Manager of the present invention.
- FIG. 9 is a schematic flow chart of the steps performed by the Carrousel Controller of the present invention.
- FIG. 10 depicts three, 3D n-gons having a plurality of levels which can be used to represent three different countries, the manufacturers in each country, the different racket types made by each manufacturer and the attributes associated with each racket type;
- FIG. 11 depicts an alternate 3D representation of the 3D objects of FIG. 10 where the levels are shown as layers instead of levels as shown in FIG. 10;
- FIG. 12 depicts the attribute n-gon for each level of FIG. 10 or 11;
- FIG. 13 depicts the levels of the 3D n-gons of FIG. 10 or 11 in an layered--onion--format
- FIG. 14 depicts the three 3D n-gons of FIG. 10 or 11 is a single, layered 3D n-gon;
- FIG. 15 depicts the user interface for extracting database schema information from a database to create a tree-definition in a tree-definition area
- FIG. 16 depicts a second view of the user interface for extracting database schema information
- FIG. 17 depicts the user building a tree-definition structure from the database schema information where each arrow represents a relationship
- FIG. 18 depicts the user's continues building of the tree-definition structure of FIG. 17;
- FIG. 19 depicts an alternate tree-definition structure built from the database schema information
- FIG. 20 is a top view of a hexagon or 6-gon having scroll-bars associated with each side of the hexagon for displaying the values of the data represented by each side;
- FIG. 21 shows the front face of the 3D, 6-gon of FIG. 20 having the values of the data associated with the front face displayed in a spreadsheet format
- FIG. 22 shows relationships in gears (n-gons) format
- FIG. 23 depicts one entire data relationship showing all levels and the dimensionality of each level of data displayed as a plurality of n-gons;
- FIG. 24 depicts a second entire data relationship showing all levels and the dimensionality of each level of data displayed as a plurality of n-gons;
- FIGS. 25 and 26 show a n-gon based spreadsheet display format horizontally and vertically depicted, respectively;
- FIG. 27 shows an alternate based spreadsheet display format for multi-dimensional data objects
- FIG. 28 shows the results of several different set theory based visual operators defined in a ⁇ where ⁇ clause of an SQL statement
- FIG. 29 shows deveral n-gon movement controls for data contained in a different types of n-gons
- FIG. 30 shows some possible n-gons for use in displaying multi-dimensional data
- FIG. 31 shows a set of possible n-gons for use in display multi-dimensional data
- FIG. 32 shows a top view of a turbostrata hexagonal 3D object, i.e., each hexagon is rotated or twisted to form a helical type structure
- FIG. 33 shows dissection operation of a 3D octagonal data object at plane "X" to produce a pulled out section
- FIG. 34 depicts n-gons placed above and below one another; sections of an n-gon pulled apart from a object; and an n-gon based spreadsheet display format in 3-D space;
- FIG. 35 shows examples of n-gon based tessellations for multi-dimensional spreadsheet grid formats
- FIG. 36 depicts a period data object for the display of data sampled in a periodic manner such as yearly, monthly, daily; etc.;
- FIG. 37 depicts an n-gonal representation of the directory and file structure of a disk drive c:
- FIG. 38 depicts a second n-gonal representation of the directory and file structure of the drive of FIG. 37.
- FIG. 39 depicts two conventional hierarchical representations of data and the a similar representation using n-gons.
- data carrousels are geometrical multi-dimensional objects that can be subjected to various geometrical operation such as rotation, twisting, expansion, addition, subtraction, multiplication, division, etc.
- n represents the number of sides of the polygon or polyhedron being represented.
- Rotating and/or Pivoting is the process of changing the dimensional order. Rotating and/or Pivoting allows transpose operation on layers, sections, and n-gon.
- Slice and Dice implies movement between n-gons, sections, or layers, or movement from one object of a given dimension to another object of a different dimension.
- An example of attribute is a persons age or color of an object.
- the value of an attribute ⁇ age ⁇ could be 25 years, and the value of color could be green.
- a slice, a division, a part, or a portion Imagine a n-gon as a building, then a section would be a floor in the building.
- n-gon as a building, if a section is a floor in the building, then a layer would be an office on a floor.
- Roll-up implies collapsing a 3D multi-dimensional representation into a more compact 3D multi-dimensional representation which normally results in the information being coarser or less detailed. Opposite of the operation of roll-down.
- Roll-down implies expanding a 3D multi-dimensional representation into a more expanded or detailed representation. Opposite of the operation of roll-up.
- Multi-dimensional is any set of information that has associated with it many attributes which require considerably more that three dimensions to display, analyze and manipulate the data, i.e., each country, each state within a country, each city within each state within each country, etc. Moreover, each permutation of set of data can itself represent a dimension.
- a plane multi-sided geometrical object A regular polygon can be inscribed within a circle.
- a polygon is defined by a given angle defining a given set of sides.
- a polygon is a closed plane object bounded by straight line segment as sides.
- a polygon of n sides is called n-gon. Following are some examples:
- a polygon having sides of equal length having sides of equal length.
- a solid object with several plane surfaces A solid object bounded by plane (flat) surfaces.
- a polygon becomes a polyhedron in 3D geometry.
- the five regular polyhedra are:
- a line becomes a plane; a triangle becomes a triangular solid or a pyramid or a tetrahedron; a square becomes a cube; and a circle becomes a sphere.
- Tessellation is a mathematical term to cover a plane without gaps or overlaps. Although it is possible to tessellate a plane with a lot of different shapes, the following are the only three self-tessellating regular polygons: triangle; square; and hexagon.
- Circle represents a n-gon with infinite sides.
- a spreadsheet can be folded into an n-gon, where each fold corresponds to a face of the n-gon, or each fold corresponds to a dimension. There can be multiple sub-fold(s) within a fold, this construct corresponds to an n-gon within an n-gon. Conversely, an n-gon can be unfolded into one or more spreadsheets.
- n-gon A polygon with n sides is called an n-gon.
- n-gon with a single side represents 1D (one dimensional) space
- n-gon with three sides (triangles) represents 3D space
- n-gon with four sides represents 4D space
- n-gon with five sides (pentagons) represents 5D space
- n-gon with a very large number of sides is represented by a circle and represents nD space.
- the inventor has found that a new multi-dimensional display and manipulation system can be implemented on a computer or in a computer memory that allow a user to display, manipulate and analyze large data structures that have many different levels and types of data.
- the system provides software methodology for reading multi-dimensional information and creating multi-dimensional data objects that are displayable on a display device where each dimension of the data is represented by a side of an n-gon contained in the data object.
- the data objects are generally n-gons or n-gonal solids.
- the objects may be simple polygons or a set of polygons within polygons to form a nested carrousel like structure that can be used to display large amounts of multi-valued data where the number of polygons and the number of sides of each polygon corresponds to the hierarchy of the data and the number of data values at each level, respectively.
- a collection of categorized data where each level is multi-valued can be displayed as a collection of n-gon where each n-gon has the same number of sides as the number of data values in each level of the categorical structure. The same procedure will work on hierarchical data as well.
- Each side of the data objects of the present invention can be a side of an embedded object which can itself be the side of an embedded object and so on.
- the n-gons in each level can be rotated as a carrousel so that the data at each level can be visualized, analyzed and understood.
- the data objects can then be stored and/or manipulated, updated, edited, refined, compacted, de-compacted, joined, differenced, summed, dissected and retrieved.
- the method of the present invention provides visual display and manipulation procedures for multi-dimensional data and data structures and periodic data and periodic data structures where: (1) information can be synthesized from data; (2) data visualization can be simplified for easy comprehension/understanding; (3) data can be logically grouped; (4) group operations can be performed on the data in an simple and straight forward manner; (5) report generation can be simplified; (6) data administration can be performed easily and understandably; (7) decision making can be simplified; and (8) trends and data relationships can be more easily visualized and uncovered.
- the present invention relates to a method implemented on a computer or in a computer memory or contained on a computer readable, digital storage device for display and manipulation of multi-dimensional data.
- the method and associated code implementing the method is sometimes referred by the acronym MAGIC which stands for Multidimensional dAta Graphical Interface Carrousel.
- MAGIC utilizes n-sided polygons (n-gons) or polygonal solids to represent multi-dimensional data.
- n-gon is like a carrousel displaying data instead of items where the n-gons can be rotated or spun about a central axis (spin left or right); while n-gonal solids can be rotated about an axis of symmetry, moved up or down through level or sections, and each level or section can be rotated or spun independently.
- FIG. 1 an example of a data object is shown which is a heptagonal solid 1 is shown.
- the n-gonal solid 1 has a plurality of levels 2.
- Each level 2 can spin about the central axis of the solid 1 independently; while the entire solid 1 can be rotated left 130 or right 131 by activating an appropriate spin operator or icon or other rotating procedure as is well known in the art.
- FIG. 2 shows an n-gonal representation of hierarchical data including an octagon 3 representing an eight valued data level where a first side 4 is an embedded hexagon 5 representing a six valued data level and a second side 6 is an embedded square 7 representing a four valued data level.
- n-gons or carrousels can extend ad infinitum, limited only by the data structure being analyzed and by computer resources or human imagination.
- Each n-gon, level, layer, section, sub-section or sub-carrousel (sub-n-gon) of a given n-gonal representation or carrousel representation is preferably a logical grouping of data or an object as described in the Object Oriented Paradigm (OOP). I call this construct a Data Carrousel or Data Object.
- OOP Object Oriented Paradigm
- Each dimension or attribute of data is represented by a side of a polygon within a Data Carrousel.
- n-dimensions or n-attributes of a given type of data or data level can be represented/visualized by a single n-sided polygon (n-gon).
- groups of related n-gons can be stacked upon each other to form a tower like structure of n-gons of the same dimensionality as shown in FIG. 1.
- the n-gons can also be of different dimensionality.
- the groups of dimensional data can be represented by a layered structure like an onion, a more compact structural representation.
- MAGIC can transition between these two representations in response to a user selected function.
- the tower or layered structures can then be displayed side-by-side or stacked to form n-gonal solids as shown in FIGS. 10, 11, 13, and 14.
- each face or side of each n-gon can represent a given data value for that data level
- the faces or sides can also be displayed as a spreadsheet of the data values of that data level where a data level is a set of data of the same type in a data classification structure or a hierarchical data structure.
- n-gons can be placed together to tessellate a plane as shown in FIG. 5 where n-gons 11 are placed so that the n-gons 11 have some shared sides. Relationships and formula can be also defined between n-gons (intergonal) and/or within n-gons (intragonal). Furthermore, relationships and formula can be defined between sections, levels, or layers or within sections, levels or layers. Of course, such relationships can be described in any permutations of intergonal relationships 12 and intragonal relationships as desired.
- MAGIC allows a user to look at data from any number of views including an outside view 13 or an inside view 14, as shown in FIG. 6, as well as front, side, back, top, bottom, and perspective views depending on the user's desire.
- MAGIC can included data objects with compact structures such as layered structures that can be pulled out to form tower structures, or tower structures that can be compressed into layered structures.
- MAGIC can represent data objects within objects such as canisters within canisters.
- MAGIC can represent periodic data by displaying a periodic geometrical object like a helix where the helix is a string of n-gonal data objects aligned so that each turn of the helix represents on full period of the data, e.g., daily, monthly, yearly, etc.
- the helix turn rate can be adjusted to any set number.
- the periodic data can be represented by other periodic functions such as sine or cosine curve, spirals or the like.
- MAGIC can be used by business analysts, data miners/surfers, executives, developers, administrators, and knowledge workers.
- MAGIC includes an user interface (UI) with associated tools and operators and/or a graphics user interface (GUI) with associated graphics tools and operators.
- UI user interface
- GUI graphics user interface
- MAGIC provides multi-dimensional analysis directly without loading or pre-summary calculations.
- MAGIC can be implemented to perform its analytical processing on a database server transferring only the final result set to the user to reduce network traffic.
- MAGIC provides a business perspective to data mining as opposed to the academic perspective.
- MAGIC has the flexibility to be implemented in either one-tiered, two-tiered or three-tiered architecture.
- MAGIC provides 1) n-number of undo and redo options, 2) n-number of options to save various states of analysis scenarios as is well known in the art. These options will encourage the user to perform analysis without concern for lost intermediate values, because the user can revert back to a particular state by employing a series of undo and/or redo commands, or the user can discard the new analysis and go back to a saved state.
- the user can view a road-map of present state or location of an analysis or data structure to aid in navigation through the analysis or through the visualization and/or manipulation of the data structure.
- MAGIC is a component-based program implemented on a computer or in a computer memory. MAGIC can also be used as a data mining/surfing tool which can be implemented within a client/server architecture.
- each n-gon within a n-gonal data representation there are a local domain, zone, region or area and a global domain, zone, region or area for the definition of relationships and/or formula between data values or between data objects to form new data objects which contain the data generated by the operation of a formula on a give set of data objects or from the defined relationships on the data objects.
- MAGIC provides: (1) rapid response and rapid solution development; (2) interpretation and processing of the request; (3) abstraction/semantic layer; (4) business view; (5) custom model development; (6) high performance; (7) conceptual view of data; (8) ad hoc grouping of dimension members; (9) decision support solution; (10) intuitive and efficient analysis; (11) advanced analytical processing capabilities; (12) hyper-information interfaces; (13) open and scalable architectures; (14) automatic discovery procedures; and (15) matrix and cross-tab mathematics can be defined on n-gons
- the product of the present invention which resided in a computers memory has a user interface (UI)--presentation & display logic--and/or a graphics user interface (GUI) and a multi-dimensional data manipulation system.
- the data manipulation system includes: (1) a meta-data manager (MDM); (2) at least one pro-active agent; (3) a pivot manager; (4) an IO broker (syntactically and/or semantically intelligent); (5) import and export routines; (6) a database connectivity engine (DCE) which provides procedures to map data from different/multiple databases and display as a single schema; (7) dynamically generated SQL routines to optimize runtime performance; (8) a query estimate manager; (9) size and times keeping routines; (10) a data carrousel or object controller (DCC); (11) a selection exception agent (SEA); (12) a spreadsheet controller (SC); (13) optionally as plurality of wizards; (14) a Schema Synchronization Manager (SSM); (15) a threads manager; (16) a macro and
- Data can be entered into the multi-dimensional data manipulation system in a number of methods, including, without limitation: retrieval from a database; input by the user via a combination of or solely through keyboard, mouse, voice recognition system, etc. commands; copy/cut and paste routines; through Inter Process Communication (IPC) (e.g, Dynamic Data Exchange (DDE), Object Linking & Embedding (OLE), etc.); input from a file or files; and voice recognition routines.
- IPC Inter Process Communication
- DDE Dynamic Data Exchange
- OLE Object Linking & Embedding
- the UI or GUI can include color to enhance and render visualization of trends and relationships easier and friendlier. For example, assume that the desired range of values is to be represented by green, the undesired range of values is to be represented by red, and an intermediate range of values is to be represented by yellow. Further assume that the outermost layer of a section of a n-gonal solid data representation contains the desired range of values, and the undesired range of values is furthermost--inner most--from the user (as the n-gon appears in a computer display device). Let the above mentioned color scheme represent the data values. Then the color of the layers--from outside to inside--will transition from green to yellow to red. How fast or how slow this transition occurs, is consistent with the distribution of the data.
- color changes or gradients of a single can be used in analyzing data object sections and/or n-gons.
- Such color coding can be used to visualize and analyze n-dimensional data to find objects such as at tractors or to find trends in financial data, scientific data, or the like.
- the Spreadsheet Controller of the present invention allows the user or the method itself to dynamically define and/or allocate rows and columns; as long as the product of the rows and the columns (rows times columns), does not exceed the resources of the computer system on which the multi-dimensional system is implemented. This feature allows the user to manipulate more values--records--for fewer variables, or more variables for less values.
- any combinations of two positive integers, greater than zero, whose product is less than, or equal to 1000 well also work.
- all combinations of two numbers where both are greater than 3 can be represented by n-gon or carrousels.
- the 1000 cells could be fragmented into numerous n-gons and carrousels provided the 1000 cell limitation is not exceeded.
- One of the many ways the user can populate data into this tool is by retrieving data from a database as shown in the flow chart schematic of FIG. 7.
- the user will invoke a function obtain a desired set of data from the database or databases in the form of a consolidated schema which is presented in the form of a list-box, tree, dialog-box, wizard, an user specified form, or the like in a display window of a display device.
- the basic process includes selecting the operator or icon to start the routine, obtaining a database to be processed; retrieving and store the database schema from the database manager. The user can then select another database and the above steps are repeated.
- the routine analyzes the schema and resolves any conflicts and combines or consolidates the database schema.
- the consolidated schema is translate and resolve to convert encrypted database names to a user understandable format.
- the final schema is prepared for export to the multi-dimensional manipulation system and the GUI and control is to the calling routine.
- the GUI displays the schema as a list in a schema display region 46b of a display window 46a of a display device (not shown) as shown in FIG. 15.
- the user can then select items 47b from the displayed schema list 47a and drag-and-drop the items 47 into a tree-definition area 129 of display window 46a as shown in FIG. 17.
- the user has the option of assigning a new name to the item or the user can let the system use the item's name as it appears in the list.
- the user will have the option to rename the item at a later time by selecting an item rename function as is well known in menu based function lists. The naming options will apply to all subsequent drag-and-drop actions.
- the user will select a second item from the list 47a and drag-and-drop a second item 47b into the tree-definition area 129 of the display as shown in FIGS. 17 and 18.
- the user Upon completion of this drag-and-drop, the user will have the option to define a relationship 50 such as a parent-child relationship between any two items in the tree-definition area 129 or redefine existing relationships between the items.
- relationship definition options will apply to all subsequent drag-and-drop actions.
- other types of relationships between the data attributes can be defined as well.
- the user is free to describe more than one tree definition simultaneously as shown in FIG. 18.
- the user then will proceed to select all the necessary items from the list and drag-and-drop them on the tree-definition area as shown in FIG. 18 or 19.
- the drag-and-drops can occur one item at a time or many items at a time by using block selecting functions as are well known in the art.
- the user can rename any item and/or redefine/rearrange any part or the entire tree before proceeding to the next step by block a move or copy operations as shown in FIG. 19. These operations are shown schematically in FIG. 8.
- the user starts the routine, the routine prompts the user for another item selection. If the user make a selection, then the item is dropped into the area 129. The user is then queried as to renaming. If the rename fiction is engaged, the user enters a new name and the item is renamed accordingly. The routine continues the selection process until the user completes selection. Once the selection process is complete. The user is queried regarding establishing possible relationships between the items. The routine then continues to define relationships until the user is satisfied with the tree structure. The desired tree structure is then prepared for export and the routine returns control to the GUI.
- the n-gon construction includes activating the routine, looping over the data level; counting the number of nodes; looping over all node and determining node dimensionality (i.e., number of leaves); and generating an n-gon; populate the n-gon with appropriate data values. If no more n-gons need to be generated, the n-gonal representation is ready for export to the GUI or to another program and the routine return control to the calling routine.
- MAGIC When a certain aspect of data can be displayed in more than one way, MAGIC will allow the user to select the appropriate option interactively by employing a wizard or a cuecard like routine. The user will have the option to undo and/or redo as many times as the computer resources allow.
- the GUI will display the exported n-gonal representation of the data structure shown illustratively in FIG. 10, or 13, or 14.
- the display n-gonal representation is then ready for navigation and data analysis, i.e., rotation around a symmetry axis, drill-down, drill-up, slice, dice, roll-up, roll-down, etc.
- the user can define spreadsheet-like relationships and/or formulae as shown in FIG. 5, and/or at various level(s) view the data in a spreadsheet format as shown in FIG. 21.
- Step 3 and 4 can be repeated till the user feels comfortable with the n-gon representation generated by the method of the present invention, i.e., by MAGIC.
- a buyer for a national sporting-goods retail company wants to purchase three types of racket: 1) tennis, 2) squash and 3) racket ball.
- the buyer needs to purchase various quantities of different types of rackets with various custom configurations from several possible manufacturer in different countries. Additionally, the buyer has to take into account the various incentives offered by some of the manufacturers, i.e., discount based on total amount of the purchase or total count of a particular type of racket.
- the buyer also has to factor in the current currency conversion rates and current import/export duties/tariffs.
- the buyer starts MAGIC.
- the buyer will invoke the meta-data manager (MDM) (see FIG. 7) from either a menu, an icon or a key stoke(s).
- MDM meta-data manager
- the GUI or UI wizard will appear on the screen and guide the buyer through the multiple options of for schema selection.
- the buyer will make the choice(s) according to the perspective of the schema he wishes to see.
- the buyer will be given the choice of how he wishes to see the database schema layout.
- the GUI displays a display window 46a on a display device (not shown).
- the display window 46a has a user selected schema structure 47a contained in a schema display area 46b.
- the user now wants to drill-down on a Racket Type field 47b in the database schema 47a to show the Racket Type data values 48 as shown in FIG. 16. This can be accomplished in a variety of ways, i.e., from a menu, an icon, double clicking on the Racket Type field 47b, right mouse click or appropriate keystrokes, etc.
- the buyer/user now selects a Tennis item 48 from the database schema 47a, and drag-and-drops the Tennis item 48 onto a tree-definition area 129 of the display window 46a to form a tree definition 49.
- the system by default uses the item's name--Tennis--as it appears in the schema.
- the buyer drag-and-drops Racket Attributes 47b on the tree-definition area 129 beneath the Tennis item 48 as shown in FIG. 18.
- the buyer defines a parent-child relationship 50 between the Tennis item 48 as a parent and the Racket Attributes 47b as a child.
- the buyer drag-and-drops a Manufacturer item 47b on the tree-definition area 129 beneath the Racket Attributes 47b. At this time, the buyer defines another parent-child relationship 50 this one between the Racket Attribute 47b as parent and the Manufacturer 47b as child. Lastly, the buyer drag-and-drops the Country item 47b on the tree-definition area 129 beneath the Manufacturer item 47b. At this time, the buyer defines another parent-child relationship 50 this one between the Manufacturer item 47b as parent and the Country item 47b as child.
- CC Carrousel Controller
- the CC scans the tree-definition area 129, correlates the information with the MDM and displays a wizard to determine the display configuration(s) of the n-gon. Some of the possibilities are shown in FIG. 10, 13, or 14.
- DCE Database Connectivity Engine
- the DCE obtains the information from the CC and correlates this information with the MDM.
- the DCE interprets the request and dynamically prepares database commands to retrieve the data from the database so that the n-gon can be populated. (Database commands are generated at runtime to optimize performance.)
- the Query Estimate Agent prepares the estimate of how long the query will take and how much data will be retrieved. This information is conveyed to the buyer via the UI or GUI. Assuming the QEA estimates are acceptable to the buyer and the buyer OKs the proposed action and the DCE generates the necessary commands and transmits them to the database and waits for the response.
- the DCE passes the data to the CC.
- the Selection Exception Agent (SEA) of the CC applies the necessary logic, tests, etc. to determine if the data satisfies the criteria selected by the buyer. Now the CC displays the data in an n-gonal representation as requested by the buyer.
- SEA Selection Exception Agent
- n-gonal solids 18, 19, and 20 set side by side; one for each country and containing all associated data from the tree structure 49 as shown in FIG. 10.
- the first n-gonal solid 18 represents the Country America and its associated data
- the second n-gonal solid 19 represents the Country Japan and its associated data
- the third solid 20 represents the Country Germany and its associated data.
- Each n-gonal solid 18,19,20 has six sides as shown in FIG. 12.
- Each side represents a Racket Attribute value: a string type 31, a frame construction material 32, a weight 33, a grip type 34, a warranty 35, and a size 36.
- Each n-gonal solid 18,19,20 comprises nine stacked sections which represent represents a manufacturers: Yankee SportsWare 21, American Sporting Goods 22, Texan Sports 23, Samurai Sports 24, Nippon Sports Equipment 25, Japanese Sporting Goods 26, Black Forest Games 27, German Sports Equipment 28, and Munich Sports 29.
- the first three sections represent Tennis 15, the next three sections represent Squash 16, and the last three sections represent Racket Ball 17.
- FIG. 11 is a second representation of the Tennis section 15 of the data of FIG. 10, except that the n-gonal solid 18,19,20 have been collapsed to a layered structure where each layer in FIG. 11 is a level in FIG. 10.
- FIG. 13 shows all of the tower structure of FIG. 10 collapsed to a layered structure.
- the objects are placed or grouped according to some predetermined criteria either specified by the buyer or based on some defaults in CC.
- the n-gons cell layout might look as follows:
- one way to handle this situation is to view the Tennis n-gon 37 from the top.
- the buyer can scroll through the data values 53 associated with each side of the Tennis n-gon 37 using scroll bars 52 to select the desired values of the Racket Attribute.
- the buyer can then activate by mouse or keyboard selection using a UI or GUI Group Wizard (GW) to automatically ripple his selections throughout the entire Tennis n-gon.
- GW GUI Group Wizard
- the buyer with the help of a GW can, ripple an operation through all n-gons or any subset of n-gons, through all sections or any subsection, through all layers or any subset of layers, or any permutation of the n-gons, sections, or layers as desired.
- An Operation Wizard (OW) of the CC allows the buyer to define a formula equal to the sum of the six sides of the n-gons shown in FIG. 11.
- the GW ripples i.e., applies, this formula to all layers of the sections that represent Tennis, in the three n-gons.
- the buyer defines a sort operation that ripples, is applied, through the layers and promotes the layer with the least sum to the face of the n-gons and demotes the layer with the highest sum furthermost from the face of the n-gons.
- the outer layer of the section in the three n-gons now represents a Manufacturer in a Country that has the least expensive Tennis Racket with the desired configuration. The buyer can now save this state and give it an appropriate name.
- the buyer can change the data representation through a set of reorganization commands using the CC to generate the n-gonal representation shown in FIG. 14. These commands can compress or decompress the n-gonal representation or rearrange the n-gonal representation. Now, instead of three n-gons the buyer sees only one n-gon 30. In this representation, the n-gon 30 has the three sections 15, 16, 17, representing the countries and nine layers 37, 38, 39, 40, 41, 42, 43, 44, and 45, representing the nine manufacturers for that type of racket.
- the buyer can then invoke a function by double-clicking on the top section of the n-gon or clicking on the right mouse button to change the representation to a top view of the n-gon as shown in FIG. 20.
- the buyer scrolls through the data values using the scroll bars to select the desired values of the Racket Attribute for tennis.
- the buyer uses the UI GW commands to again automatically ripple his selections through all the layers of the top section of the n-gon that represent the tennis manufacturers.
- the OW function of the CC allows the buyer to define a formula equal to the sum of the six sides of the n-gon.
- the GW ripples this formula through all layers of the top section in n-gon to display the tennis manufacturers.
- the buyer defines a sort operation based on the previously defined formula. This sort operation is then rippled through the layers of the top section promoting the layer with the least sum to the face of the n-gon. and demoting the layer with the highest sum furthermost from the face of the n-gon. This enables the buyer to determine the least expensive tennis manufacturer amongst the nine manufacturers.
- the buyer scrolls through the data values on each side of the hexagon and selects the desired values of the Racket Attribute for squash.
- the buyer can repeat the above mentioned process, thereby determining the least expensive squash manufacturer amongst the nine manufacturers.
- the buyer can determine the least expensive racket ball manufacturer among the nine manufacturers.
- the quantity and price for each type of racket factoring in tariffs, discounts, etc. can be determine so that the least expensive and best resupply order can be filled.
- the buyer can then save this state giving it an appropriate name or by activating an order generation routine, generate the appropriate order form.
- the buyer uses the OW function to define a formula equal to the sum of the six sides for each of three the sections of the n-gon.
- the GW ripples this formula through all layers (manufacturers) of the three sections in the n-gon--which represents all types of rackets and their manufacturers.
- the buyer defines a sort fiction based on the previously defined formula.
- This sort fiction ripples through all layers and all sections, and promotes a combination of layer(s) which represents a manufacturer with the least sum (price), to the face of the n-gon and demotes the combination of layer(s) that represent a manufacturer with the highest sum (price), furthermost from the face of the n-gon. This enables the buyer to determine the least and most expensive manufacturer from among the nine manufacturers.
- Group operations are one strength of the multi-dimensional analysis system of this invention. These operations, which can appear as icons in the display window in the form of a tool or power bar or in any other operational display format. Therefore, the buyer does not have to individually define all of the above formula or relationships, instead the buyer defines the basic or the atomic relationships and then propagates them through the groups of related data values. Similarly, formula can be defined for gon1.section2 and gon1.section3 and then propagated through their respective groups. The group operation feature saves the buyer the trouble of defining each formula explicitly.
- SM Spreadsheet Manager
- MAGIC For the second example of the use of MAGIC, the buyer goes back to the meta-data manager (MDM). A UI or GUI wizard appears in the display screen and steps the buyer through a selection menu or question answer session to determine how the buyer wishes to see the database schema in an n-gonal representation. Let us assume the buyer selects the tree structure 47a shown in FIG. 19.
- MDM meta-data manager
- the buyer now decides to arrange the countries, Racket Types and Manufacturers at the same level 51. Now suppose the buyer wants to define a parent-child relationship 50 between the Racket Attributes item a child and the Racket Types item as parent, the buyer simply drags-and-drops the Racket Types item into the tree-definition area 129 and defines the parent child relationship50 by forming a downward arrow from the Racket Attributes item to the Racket Types item using the icon operators associated with a tool or power bar. This buyer's final tree-definition is shown in FIG. 19.
- the CC scans the tree-definition area 129, obtains the desired information using the MDM as shown in FIG. 7 and activates a wizard to determine the display configuration(s) of the n-gon.
- Several possible n-gonal representations of the selected tree-definitions are shown in FIG. 23, 24, or 25.
- the buyer selects the representation shown in FIG. 23.
- the CC passes this and other necessary information to the Database Connectivity Engine (DCE).
- DCE Database Connectivity Engine
- the buyer can then navigate, manipulate, perform operations, and define relationships and formula on the data or data groups through the UI or GUI of MAGIC as described in Analysis Scenario 1 until the necessary data is retrieved and from the database.
- the CC in conjunction with the GUI displays the data as requested by the buyer.
- the buyer will see a three-sided n-gon 59 (triangle): one side represents a Country item 61; one side represents a Racket Types item 62; and one side represents a Manufacturers item 60. But because each item 60,61,62 are multi-valued data items, each side of triangle 59 is an n-gon of the appropriate dimensionality of the data.
- the buyer can rotate the n-gon 59 to place the n-gon 59 in an appropriate orientation to be about to view a given side. Then the buyer can then activate a procedure to display all related n-gons associated with each side of n-gon 59.
- the Country item 61 is displayed as an n-gon 63 of the dimensionality of the Country item 61. If the buyer selects the Country America 64, the CC can be configured highlight a n-gon 88 of America manufacturers 79, 80, 81 and/or to eliminate or gray out all non-American manufacturers n-gons 89 and 90. Next, the buyer selects the face of the n-gon 59 that represents the Manufacturers item 61.
- the buyer is presented with only the valid manufacturers 78 for the country 64 already selected (an example of set theory operation--intersection of America and manufacturers). The rest of the selections are either grayed-out or not displayed.
- the option to gray-out or no-display can be set buyer the user in the option menus associated with the CC and can be changed whenever desired.
- the buyer rotates the n-gon 59 till the face that represents the Racket Type 62 is in view.
- the buyer double-clicks on the Tennis face 76 and an n-gon 74 and the display creates n-gon 67 that represents Racket Attributes.
- the buyer rotates the child--Racket Attributes--n-gon and makes the desired selection(s).
- the buyer has decided to view the manufacturers in America, the make of tennis rackets, and the desired racket attributes. Now the buyer can perform the necessary analysis.
- the buyer now wishes to see this information in a spreadsheet form. So the buyer invokes the Spreadsheet Manager (SM).
- SM Spreadsheet Manager
- the SM formats the data and invokes the spreadsheet of choice.
- the SM used well known techniques for display in the appropriate spread sheet in the active graphics display window.
- FIGS. 25, 26, and 27 Yet another way the buyer can perform the desired analysis is to view the necessary data in a spreadsheet-like format.
- the CC has to tessellate the screen with n-gons in a spreadsheet-like manner see FIGS. 25, 26, and 27.
- the major difference in spreadsheet and MAGIC is that, a cell in a typical spreadsheet is four-sided (rectangular in 2D space, cube in 3D space), thus only a limited number of variables can influence the value of the cell. But in the case of MAGIC, the number of sides of a cell is limitless (polygon in 2D space, polyhedra in 3D space) and is limited only by the number of variables that need to be expressed--one side for each variable. Thus, infinite number of variables can influence the value of the cell.
- the value of a cell is influenced and limited by, 1) row--x-axis, 2) column--y-axis, and 3) the depth--z-axis.
- the value of a cell is influenced by the side of the n-gon--virtually limitless.
- the n-gons 37 are arranged in a tessellated structure 92 which can be horizontally or vertically oriented with the hexagons intersecting at two faces and two vertices in the center or oriented so that all faces of interior hexagons are coincident.
- Section 89-90 represent horizontal sections in FIG. 25 and vertical sections in FIGS. 26 and 27.
- Sections 92-100 represent vertical section is FIG. 25 and horizontal sections in FIGS. 26 and 27.
- MDM see FIG. 7, provides a semantic bridge between logical database schema and the physical database schema.
- MDM has a Schema Synchronization Agent (SSA) that keeps the logical schema synchronized with the physical schema.
- SSA Schema Synchronization Agent
- the fiction of the Meta-data Manager is to furnish information about the data.
- the MDM explains the layout of data repositories such as files, spreadsheets, relational databases, object oriented databases, legacy databases, etc.
- the MDM operates by communicating with database manager, reading the data dictionaries, matching the foreign keys, extracting the join information, or by reading spreadsheet and files, etc. Once the information has been imported or read in, name conflicts are resolved, cryptic names are simplified, and then the information is stored in a database associated with the MDM as shown in FIG. 7.
- the user of the tool has to identify a data source to MDM that the user is interested in to be included in the MDM associated database.
- MDM proceeds to import and store the pertinent data. Once the information has been imported in the MDM it can then be used to identify the data the user wants to work with.
- a Translation Agent translates or transforms the cryptic database names to a user understandable business name.
- the MDM then passes this information to User Interface (UI) so that the schema may be shown to the user in the form of a list-box, tree, dialog-box, an user specified form, etc.
- UI User Interface
- the display and selection format choice is handled by a UI wizard.
- the MDM is capable of mapping data from different and/or multiple databases and organizing the information as a consolidated schema which can be displayed by the UI.
- the user interface is a component that controls, responds, and reacts to user actions and requests.
- the user interface acts as an intermediary between the user and the other components of the system such as MDM, Tree Definition Area, Carrousel Controller, etc.
- the user interface is context sensitive in the sense that it knows what the user is working with or what is currently active, it then proceeds to display the appropriate information.
- the user interface also interacts with the operating system to paint, redraw, interpret mouse and keyboard actions, etc.
- the UI can also be or include a GUI which contains a complete set of routines for the display and manipulation of 2D and 3D objects on a display device.
- the routines include standard line drawing, polygon drawing, fill routines, shaping routines, scaling routines, view port routines, window routines, rotation and geometrical modification routines, template routines, and other routine included in graphics software products such as Harvard Graphics, Visio, or other similar graphics routines.
- Tree definition area is like a palette where the user formulates the abstract that the user is interested in. For example, as the necessary selections are made from MDM they are dropped on the Tree Definition Area, hence the parent-child relationship or a sibling relationship can be defined.
- the MDM is queried about the attributes of the object, and this information is saved. All subsequent actions on the object(s) are also saved, i.e., parent-child definitions, sibling definitions, etc. When the user completes a transaction this information is passed to the Carrousel Controller so that it may determine how to render the n-gonal representation.
- the main fiction of a Carrousel Controller is to obtain input from a source such as TDA and then represent this information with appropriate n-gons.
- the CC can be driven either in manual, semi-manual or completely automated mode. In the manual mode the user specifies exactly what the CC needs to do, the semi-manual mode is accomplished by using wizard technology, and the completely automated mode is accomplished by allowing CC to make all the choices itself. Although, the user can still make changes to the automatically generated model.
- the Database Connectivity Engine performs the task of formulating the user's request and retrieving the necessary data from the database.
- the DCE retrieves data by either issuing SQL commands or by using an ODBC interface. For example, as the user selects and refines the data that the user is after, this is translated to ⁇ select ⁇ or ⁇ where ⁇ SQL clauses. In other words DCE simply generates scripts that database managers can understand.
- the user either from a menu, button, keyboard shortcut, mouse right click, etc. indicated that the user desires to automatically generate an n-gon representation of a disk drive structure with directories, subdirectories and files.
- MAGIC reads the directory structure starting from the root c: ⁇ . Now the root can contain files and directories. If an entry in the root is a file, then we have reached the leaf level. If an entry is a directory, then we have a parent-child relationship between the root and the first level of subdirectories. Then the subdirectories have to be drilled-down to obtain additional structure. Let the following be the list of subdirectories contained in the root: ⁇ apps; ⁇ data; ⁇ games; ⁇ temp; and ⁇ windows. In addition to the directories there are eighteen files in the root. Thus, we can describe this situation with a 6-gon or hexagon. Five sides represent subdirectories and the other side represents a files which shows eighteen levels or layers.
- FIG. 37 depicts the directory structure in associated and dissociated views.
- the files could be represented by a multi-sided object corresponding to the extension of the files.
- the ⁇ windows directory includes four subdirectories: ⁇ system; ⁇ temp ⁇ ; ⁇ command, and ⁇ backup and ninety seven files.
- the ⁇ windows directory is the parent and the other four directories are children.
- This situation can be described with a five sided n-gon (pentagon), four sides to represent directories, and one side to represent the files.
- the side that represents the files will have ninety seven layers or levels, to correspond with the ninety seven files.
- MAGIC cannot show all ninety seven files at the same time, it will provide scroll bars so that the user can scroll up or down through the files.
- the files could be represented by a multi-sided object corresponding to the extension of the files.
- the directory structure and associated files within the directories are shown in a n-gonal representation in FIG. 38 where hexagon 132 includes the top level directories and pentagon 133 represents the windows sub-directories. Extending downward from n-gon 132 and 133 are the associated files 134 and 135 in the files directories of n-gon 132 and the files sub-directory of n-gon 133.
- MAGIC responds by increasing the number of sides of the root by one, i.e., from a hexagon to a heptagon. The new side is named ⁇ demo ⁇ .
- MAGIC can respond to this request in two ways, in the first scenario it can display the entire geometry and color code the hits (if any). In the second scenario, it can reduce the geometry and only show the hits.
- a helix is a 3D format for representing periodic or semi-periodic data such as data which is generated daily, hourly, weekly, monthly, yearly, etc.
- a spiral is another format for representing periodic or semi-periodic data.
- each helix can be tied to a graph, and as the helix turns clockwise or counterclockwise the graph will be updated.
- the graph will display 9 am daily readings for one year for each city.
- Two helical structural representation 200 and 202 of periodic data is shown in FIG. 36, each representation 200 and 202 having central axis 204 for rotational operations.
- the process and product of the present invention can use standard boolean operation to related data as is well known in the art.
- the process and products of this invention can also use traditional set theory visualization techniques including those shown in FIG. 28.
- the set theory visual objects can be defined through use of the ⁇ where ⁇ clause for SQL statements, 101 shows a and b and c, 102 shows a and b not c, 103 shows (a or b or c) not (a and b and c), 104 shows a or b or c, 105 shows (a and b) or (a and c) or (b and c), 106 shows a or (b and c);
- FIG. 29 shows n-gon movement controls
- 107 is rotation or spin control, in other words it allows circular movement
- 108 is a control to move from one n-gon to another n-gon, from one section to another section, from one layer to another layer, in other words it allows movement along a multidimensional axis
- 109 is a control that is ⁇ position ⁇ or ⁇ context ⁇ sensitive, i.e. when placed on a n-gon(s), section(s), layer(s) it is aware of all possible movements.
- n-gons that can be used to display and manipulation multi-dimensional data.
- the n-gons include, without limitation, an open-connected structure 110; multi-pointed star-like structure 111; a vertex connected structure 112; a Y type structure 113; a multi-rectangular array 114; a dual rectangular array 115; a wave like structure 116; a 3D star structure 117, and a single rectangle 118.
- FIG. 31 shows a n-gon 119 that is comprised of other n-gons, this figure represents the following characteristics: variation of layers 9, top view of n-gons tessellation, grid or matrix layout for a spreadsheet.
- FIG. 32 shows a top view of a n-gonal structure 120 that is twisted like a helix, to display all the sections contained in that n-gonal 120. This type of a representation can be used to facilitating selection and zooming to particular n-gons or n-gonal sections.
- FIG. 33 a section 123 is shown extracted or pulled along plane 122 from a n-gonal solid 121.
- This FIG. 33 illustrations the effect of a section or n-gon extraction operation.
- FIG. 34 depicts a stratified alignment of n-gons which can represent relationship visualization or n-gonal solids in an exploded view.
- FIG. 35 several n-gon based tessellations are shown, including the traditional rectangular spreadsheet grid 124; a triangular tessellation 125; a square tessellation 126; a hexagonal tessellation 127; and an octagonal tessellation 128.
- a triangular tessellation 125 a square tessellation 126
- a hexagonal tessellation 127 a hexagonal tessellation 127
- an octagonal tessellation 128 any other tessellation structure can be used as well.
- These tessellation structure can be associated with each
- Hierarchies defined for representing multi-dimensional data structures: (1) organization chart type hierarchy and (2) Microsoft Windows Explorer type hierarchy.
- Organization chart type hierarchy generally looks an inverted tree 136 as shown in FIG. 39.
- the sub-levels or children are always shown below higher hierarchical levels or parents.
- This type of hierarchy typically grows wider more rapidly with each generation than it grows taller with each successive generation. Since a parent-child or a sibling--sibling relationship is represented linearly, this type of hierarchy requires left-to-right or right-to-left screen scrolling to view all the members in the hierarchy.
- the MS Windows Explorer type hierarchy is similar to a tree laying sideways 137 as shown in FIG. 39. The children are always shown to the right of the parent. This hierarchy grows taller more rapidly with each successive generation than it grows wider. Since a parent-child or a sibling-sibling relationship is represented linearly, this type of hierarchy required top-to-bottom or bottom-to-top screen scrolling to view all the members of the hierarchy.
- the representation 138 of FIG. 39 is an equivalent n-gonal representation of the same tree structures 136 and 137.
- the n-gonal representation is much more compact and visually understandable.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
______________________________________ 3 sides triangle 3-gon 4 sides quadrilateral 4-gon 5 sides pentagon 5-gon 6 sides hexagon 6-gon 7 sides heptagon 7-gon 8 sides octagon 8-gon 9 sides nonagon 9-gon 10 sides decagon 10-gon 11 sides undecagon 11-gon 12 sides dodecagon 12-gon 15 sides pentadecagon 15-gon ______________________________________
______________________________________ tetrahedron (pyramid) 4 faces hexahedron (cube) 6 facesoctahedron 8 facesdodecahedron 12 facesicosahedron 20 faces ______________________________________
______________________________________ Attribute Value Element # ______________________________________ frameconstruction material graphite 32 size regular 36weight medium 33 string type synthetic 31 grip type leather natural 34warranty month 35 ______________________________________
______________________________________ gon1.section1.Yankee SportsWare.sum = gon1.section1.Yankee SportsWare.face1 + /* frame const. material */ gon1.section1.Yankee SportsWare.face2 + /* size */ gon1.section1.Yankee SportsWare.face3 + /* weight */ gon1.section1.Yankee SportsWare.face4 + /* string type */ gon1.section1.Yankee SportsWare.face5 + /* grip type */ gon1.section1.Yankee SportsWare.face6 + /* warranty */ gon1.section1.American Sporting Goods.sum = gon1.section1.American Sporting Goods.face1 + /* frame const. material */ gon1.section1.American Sporting Goods.face2 + /* size */ gon1.section1.American Sporting Goods.face3 + /* weight */ gon1.section1.American Sporting Goods.face4 + /* string type */ gon1.section1.American Sporting Goods.face5 + /* grip type */ gon1.section1.American Sporting Goods.face6 + /* warranty */ gon1.section1.Texan Sports.sum = gon1.section1.Texan Sports.face1 + /* frame const. material */ gon1.section1.Texan Sports.face2 + /* size */ gon1.section1.Texan Sports.face3 + /* weight */ gon1.section1.Texan Sports.face4 + /* string type */ gon1.section1.Texan Sports.face5 + /* grip type */ gon1.section1.Texan Sports.face6 + /* warranty */ gon1.section1. Samurai Sports.sum = gon1.section1.Samurai Sports Sports.face1 + /* frame const. material */ gon1.section1.Samurai Sports Sports.face2 + /* size */ gon1.section1.Samurai Sports Sports.face3 + /* weight */ gon1.section1.Samurai Sports Sports.face4 + /* string type */ gon1.section1.Samurai Sports Sports.face5 + /* grip type */ gon1.section1.Samurai Sports Sports.face6 + /* warranty */ gon1.section1. Nippon Sports Equipment.sum = gon1.section1.Nippon Sports Equipment.face1 + /* frame const. material */ gon1.section1.Nippon Sports Equipment.face2 + /* size */ gon1.section1.Nippon Sports Equipment.face3 + /* weight */ gon1.section1.Nippon Sports Equipment.face4 + /* string type */ gon1.section1.Nippon Sports Equipment.face5 + /* warranty */ gon1.section1. Japanese Sporting Goods.sum = gon1.section1.Japanese Sporting Goods.face1 + /* frame const. material */ gon1.section1.Japanese Sporting Goods.face2 + /* size */ gon1.section1.Japanese Sporting Goods.face3 + /* weight */ gon1.section1.Japanese Sporting Goods.face4 + /* string type */ gon1.section1.Japanese Sporting Goods.face5 + /* grip type */ gon1.section1.Japanese Sporting Goods.face6 + /* warranty */ gon1.section1. Black Forest Games.sum = gon1.section1.Black Forest Games.face1 + /* frame const. material */ gon1.section1.Black Forest Games.face2 + /* size */ gon1.section1.Black Forest Games.face3 + /* weight */ gon1.section1.Black Forest Games.face4 + /* string type */ gon1.section1.Black Forest Games.face5 + /* grip type */ gon1.section1.Black Forest Games.face6 + /* warranty */ gon1.section1. German Sports Equipment.sum = gon1.section1.German Sports Equipment.face1 + /* frame const. material */ gon1.section1.German Sports Equipment.face2 + /* size */ gon1.section1.German Sports Equipment.face3 + /* weight */ gon1.section1.German Sports Equipment.face4 + /* string type */ gon1.section1.German Sports Equipment.face5 + /* grip type */ gon1.section1.German Sports Equipment.face6 + /* warranty */ gon1.section1. Munich Sports.sum = gon1.section1.Munich Sports.face1 + /* frame const. material */ gon1.section1.Munich Sports.face2 + /* size */ gon1.section1.Munich Sports.face3 + /* weight */ gon1.section1.Munich Sports.face4 + /* string type */ gon1.section1.Munich Sports.face5 + /* grip type */ gon1.section1.Munich Sports.face6 + /* warranty */ ______________________________________
______________________________________ gon1.section1.Japanese Sporting Goods = gon1.section1.Japanese Sporting Goods.sum*currency exchange rate*current tariff ______________________________________
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/721,899 US5767854A (en) | 1996-09-27 | 1996-09-27 | Multidimensional data display and manipulation system and methods for using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/721,899 US5767854A (en) | 1996-09-27 | 1996-09-27 | Multidimensional data display and manipulation system and methods for using same |
Publications (1)
Publication Number | Publication Date |
---|---|
US5767854A true US5767854A (en) | 1998-06-16 |
Family
ID=24899765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/721,899 Expired - Lifetime US5767854A (en) | 1996-09-27 | 1996-09-27 | Multidimensional data display and manipulation system and methods for using same |
Country Status (1)
Country | Link |
---|---|
US (1) | US5767854A (en) |
Cited By (219)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5857197A (en) * | 1997-03-20 | 1999-01-05 | Thought Inc. | System and method for accessing data stores as objects |
US5886700A (en) * | 1997-07-24 | 1999-03-23 | The United States Of America As Represented By The Secretary Of The Navy | Three-dimensional volume selection tool |
US5897642A (en) * | 1997-07-14 | 1999-04-27 | Microsoft Corporation | Method and system for integrating an object-based application with a version control system |
US5943668A (en) * | 1997-06-30 | 1999-08-24 | International Business Machines Corporation | Relational emulation of a multi-dimensional database |
US5966717A (en) * | 1996-12-20 | 1999-10-12 | Apple Computer, Inc. | Methods for importing data between database management programs |
WO1999057890A1 (en) * | 1998-05-07 | 1999-11-11 | Hitachi, Ltd. | Method for selecting information signal and device therefor, image information display having the device, and remote controller |
US6005578A (en) * | 1997-09-25 | 1999-12-21 | Mindsphere, Inc. | Method and apparatus for visual navigation of information objects |
US6014671A (en) * | 1998-04-14 | 2000-01-11 | International Business Machines Corporation | Interactive retrieval and caching of multi-dimensional data using view elements |
FR2784208A1 (en) * | 1998-10-02 | 2000-04-07 | Mark Asch | Interactive procedure and system for the artificial representation of multiple digital data fluxes allowing the user to establish relationships between different elements of the data flux |
US6073140A (en) * | 1997-07-29 | 2000-06-06 | Acxiom Corporation | Method and system for the creation, enhancement and update of remote data using persistent keys |
US6208987B1 (en) * | 1997-07-15 | 2001-03-27 | Nec Corporation | Hierarchically structured indexed information retrieval system |
US6260046B1 (en) | 1998-12-02 | 2001-07-10 | Pitney Bowes Inc. | Product architecture retrieval information system |
US6282546B1 (en) * | 1998-06-30 | 2001-08-28 | Cisco Technology, Inc. | System and method for real-time insertion of data into a multi-dimensional database for network intrusion detection and vulnerability assessment |
US6281898B1 (en) * | 1997-05-16 | 2001-08-28 | Philips Electronics North America Corporation | Spatial browsing approach to multimedia information retrieval |
US6292810B1 (en) * | 1997-03-03 | 2001-09-18 | Richard Steele Richards | Polymorphic enhanced modeling |
US6304871B1 (en) * | 1998-12-18 | 2001-10-16 | International Business Machines Corporation | Method and system for characterizing applications for use with databases having structured query language interfaces |
US20010037228A1 (en) * | 2000-05-05 | 2001-11-01 | Iaf Consulting, Inc. | System and method for using metadata to flexibly analyze data |
WO2001084295A1 (en) * | 2000-04-28 | 2001-11-08 | NOLEN, James, A. III | Method and apparatus for three dimensional internet and computer file interface |
US6317750B1 (en) * | 1998-10-26 | 2001-11-13 | Hyperion Solutions Corporation | Method and apparatus for accessing multidimensional data |
EP1186987A2 (en) * | 2000-09-07 | 2002-03-13 | Sony Corporation | Apparatus for displaying information |
US6362839B1 (en) | 1998-09-29 | 2002-03-26 | Rockwell Software Inc. | Method and apparatus for displaying mechanical emulation with graphical objects in an object oriented computing environment |
EP1190348A1 (en) * | 1999-05-12 | 2002-03-27 | Proclarity Corporation | Navigating data points in a multidimensional database |
US6366293B1 (en) | 1998-09-29 | 2002-04-02 | Rockwell Software Inc. | Method and apparatus for manipulating and displaying graphical objects in a computer display device |
WO2002047311A2 (en) * | 2000-12-07 | 2002-06-13 | Newsgrade Corporation | System and method for organizing, navigating and analyzing data |
US6421666B1 (en) * | 1999-11-08 | 2002-07-16 | Oracle Corporation | Mechanism for sharing ancillary data between a family of related functions |
WO2002071198A2 (en) * | 2001-03-07 | 2002-09-12 | Siemens Aktiengesellschaft | Positioning of areas displayed on a user interface |
US6462763B1 (en) | 1999-08-24 | 2002-10-08 | Spotware Technologies, Inc. | Method, system, and software for tracking moving hotspots with a static or moving cursor |
US20020198858A1 (en) * | 2000-12-06 | 2002-12-26 | Biosentients, Inc. | System, method, software architecture, and business model for an intelligent object based information technology platform |
US6523041B1 (en) | 1997-07-29 | 2003-02-18 | Acxiom Corporation | Data linking system and method using tokens |
US20030041305A1 (en) * | 2001-07-18 | 2003-02-27 | Christoph Schnelle | Resilient data links |
US6559860B1 (en) * | 1998-09-29 | 2003-05-06 | Rockwell Software Inc. | Method and apparatus for joining and manipulating graphical objects in a graphical user interface |
US20030144868A1 (en) * | 2001-10-11 | 2003-07-31 | Macintyre James W. | System, method, and computer program product for processing and visualization of information |
US20030142092A1 (en) * | 2002-01-25 | 2003-07-31 | Silicon Graphics, Inc. | Graphical user interface widgets viewable and readable from multiple viewpoints in a volumetric display |
US20030200221A1 (en) * | 1999-08-04 | 2003-10-23 | Reuven Bakalash | Stand-alone cartridge-style data aggregation server |
US20030210284A1 (en) * | 2002-05-10 | 2003-11-13 | Government Of The United States Of America | Navigational display of hierarchically structured data |
US20030229652A1 (en) * | 2000-02-28 | 2003-12-11 | Reuven Bakalash | Enterprise-wide data-warehouse with integrated data aggregation engine |
WO2003107120A2 (en) * | 2002-06-13 | 2003-12-24 | 3-Dimensional Pharmaceuticals, Inc. | Methods, systems, and computer program products for representing object relationships in a multidimensional space |
US20040049522A1 (en) * | 2001-04-09 | 2004-03-11 | Health Language, Inc. | Method and system for interfacing with a multi-level data structure |
US20040049730A1 (en) * | 2002-09-05 | 2004-03-11 | Beacon Information Technology Inc. | Data management system, method, and recording medium |
US6718336B1 (en) | 2000-09-29 | 2004-04-06 | Battelle Memorial Institute | Data import system for data analysis system |
US20040078378A1 (en) * | 2002-07-10 | 2004-04-22 | Jerzy Bala | Knowledge inferencing and data visualization method and system |
US6728724B1 (en) * | 1998-05-18 | 2004-04-27 | Microsoft Corporation | Method for comparative visual rendering of data |
US20040085319A1 (en) * | 2002-11-04 | 2004-05-06 | Gannon Aaron J. | Methods and apparatus for displaying multiple data categories |
US20040093296A1 (en) * | 2002-04-30 | 2004-05-13 | Phelan William L. | Marketing optimization system |
US20040117319A1 (en) * | 2002-09-30 | 2004-06-17 | Yasuhiro Oshima | Used article quotation method and system |
US6753847B2 (en) | 2002-01-25 | 2004-06-22 | Silicon Graphics, Inc. | Three dimensional volumetric display input and output configurations |
US20040122646A1 (en) * | 2002-12-18 | 2004-06-24 | International Business Machines Corporation | System and method for automatically building an OLAP model in a relational database |
US20040119712A1 (en) * | 2002-12-19 | 2004-06-24 | Kenknight Bruce H. | System and method for representing multi-dimensional patient health |
US20040139061A1 (en) * | 2003-01-13 | 2004-07-15 | International Business Machines Corporation | Method, system, and program for specifying multidimensional calculations for a relational OLAP engine |
US20040215626A1 (en) * | 2003-04-09 | 2004-10-28 | International Business Machines Corporation | Method, system, and program for improving performance of database queries |
US20040248066A1 (en) * | 2003-06-03 | 2004-12-09 | Recigno David T. | Dental appliance on-line ordering including display of end product image and mold three-dimensional scanning for digital transmission |
US20040267498A1 (en) * | 2003-06-27 | 2004-12-30 | Tang Ping T. | Method and apparatus for measuring accuracies of fixed-point computations |
US20040268268A1 (en) * | 2003-06-30 | 2004-12-30 | Sylvia Scheu | Graphical access to data objects |
US6839719B2 (en) * | 2002-05-14 | 2005-01-04 | Time Industrial, Inc. | Systems and methods for representing and editing multi-dimensional data |
US20050060326A1 (en) * | 1999-08-04 | 2005-03-17 | Reuven Bakalash | Stand-alone cartridge-style data aggregation server and method of and system for managing multi-dimensional databases using the same |
US20050108752A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | 3-Dimensional browsing and selection apparatus and method |
US20050108756A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | Interactive program guide with preferred items list apparatus and method |
US20050108749A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | Automatic content display apparatus and method |
US6898530B1 (en) | 1999-09-30 | 2005-05-24 | Battelle Memorial Institute | Method and apparatus for extracting attributes from sequence strings and biopolymer material |
US20050131929A1 (en) * | 2003-10-17 | 2005-06-16 | Bailey Christopher D. | Computer-implemented multidimensional database processing method and system |
US20050131924A1 (en) * | 2003-12-15 | 2005-06-16 | Quantum Matrix Holding, Llc | System and method for multi-dimensional organization, management, and manipulation of data |
US6940509B1 (en) | 2000-09-29 | 2005-09-06 | Battelle Memorial Institute | Systems and methods for improving concept landscape visualizations as a data analysis tool |
US20050208971A1 (en) * | 2002-02-01 | 2005-09-22 | Microsoft Corporation | Method and system for managing changes to a contact database |
US20050275628A1 (en) * | 2002-01-25 | 2005-12-15 | Alias Systems Corp. | System for physical rotation of volumetric display enclosures to facilitate viewing |
US20050278290A1 (en) * | 2004-06-14 | 2005-12-15 | International Business Machines Corporation | Systems, methods, and computer program products that automatically discover metadata objects and generate multidimensional models |
US20060005127A1 (en) * | 2004-07-02 | 2006-01-05 | Ferguson Kevin M | System and method of format specification |
US20060004738A1 (en) * | 2004-07-02 | 2006-01-05 | Blackwell Richard F | System and method for the support of multilingual applications |
US20060005112A1 (en) * | 2004-07-02 | 2006-01-05 | David Lilly | System and method of report layout |
US20060010147A1 (en) * | 2002-10-18 | 2006-01-12 | Patrick Arras | Method and system for online analytical processing (olap) |
US20060010114A1 (en) * | 2004-07-09 | 2006-01-12 | Marius Dumitru | Multidimensional database subcubes |
US20060010112A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | Using a rowset as a query parameter |
US20060010058A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | Multidimensional database currency conversion systems and methods |
US20060010155A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | System that facilitates maintaining business calendars |
US6990238B1 (en) | 1999-09-30 | 2006-01-24 | Battelle Memorial Institute | Data processing, analysis, and visualization system for use with disparate data types |
US20060020921A1 (en) * | 2004-07-09 | 2006-01-26 | Microsoft Corporation | Data cube script development and debugging systems and methodologies |
US20060020608A1 (en) * | 2004-07-09 | 2006-01-26 | Microsoft Corporation | Cube update tool |
US6993529B1 (en) * | 2001-06-01 | 2006-01-31 | Revenue Science, Inc. | Importing data using metadata |
US7007029B1 (en) | 1999-01-15 | 2006-02-28 | Metaedge Corporation | System for visualizing information in a data warehousing environment |
US20060048076A1 (en) * | 2004-08-31 | 2006-03-02 | Microsoft Corporation | User Interface having a carousel view |
US20060106833A1 (en) * | 2002-05-10 | 2006-05-18 | International Business Machines Corporation | Systems, methods, and computer program products to reduce computer processing in grid cell size determination for indexing of multidimensional databases |
US20060117251A1 (en) * | 2003-02-28 | 2006-06-01 | Microsoft Corporation | Method and system for converting a schema-based hierarchical data structure into a flat data structure |
US20060125822A1 (en) * | 2002-06-28 | 2006-06-15 | Alias Systems Corp. | Volume management system for volumetric displays |
US20060149778A1 (en) * | 2004-12-30 | 2006-07-06 | Lina Clover | Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format |
EP1684195A2 (en) * | 2005-01-24 | 2006-07-26 | Microsoft Corporation | Diagrammatic access and arrangement of data |
US20060190432A1 (en) * | 2005-02-22 | 2006-08-24 | Sas Institute Inc. | System and method for graphically distinguishing levels of a multidimensional database |
US7106329B1 (en) | 1999-09-30 | 2006-09-12 | Battelle Memorial Institute | Methods and apparatus for displaying disparate types of information using an interactive surface map |
US7110998B1 (en) * | 1998-10-13 | 2006-09-19 | Virtual Gold, Inc. | Method and apparatus for finding hidden patterns in the context of querying applications |
US20060224998A1 (en) * | 2005-03-30 | 2006-10-05 | Riss Uwe V | Multi-dimensional systems and controls |
US7134095B1 (en) | 1999-10-20 | 2006-11-07 | Gateway, Inc. | Simulated three-dimensional navigational menu system |
US20070067715A1 (en) * | 1997-01-31 | 2007-03-22 | Timebase Pty Limited | MALTweb multi-axis viewing interface and higher level scoping |
US20070074107A1 (en) * | 1997-01-31 | 2007-03-29 | Timebase Pty Limited | Maltweb multi-axis viewing interface and higher level scoping |
US7233952B1 (en) | 1999-01-15 | 2007-06-19 | Hon Hai Precision Industry, Ltd. | Apparatus for visualizing information in a data warehousing environment |
US20070156661A1 (en) * | 1998-06-29 | 2007-07-05 | At&T Labs, Inc. | Emergency facility information system and methods |
US20070203923A1 (en) * | 2006-02-28 | 2007-08-30 | Thomas Susan M | Schema mapping and data transformation on the basis of a conceptual model |
US20070203922A1 (en) * | 2006-02-28 | 2007-08-30 | Thomas Susan M | Schema mapping and data transformation on the basis of layout and content |
WO2007118228A2 (en) * | 2006-04-07 | 2007-10-18 | Midsoft Systems, Inc. | Method for importing, processing and displaying data in spreadsheets |
US7320001B1 (en) | 1999-01-15 | 2008-01-15 | Hon Hai Precision Industry, Ltd. | Method for visualizing information in a data warehousing environment |
US20080021916A1 (en) * | 2001-11-16 | 2008-01-24 | Timebase Pty Limited | Maintenance of a markup language document in a database |
US7324085B2 (en) | 2002-01-25 | 2008-01-29 | Autodesk, Inc. | Techniques for pointing to locations within a volumetric display |
US20080065646A1 (en) * | 2006-09-08 | 2008-03-13 | Microsoft Corporation | Enabling access to aggregated software security information |
US20080104531A1 (en) * | 2006-09-29 | 2008-05-01 | Stambaugh Thomas M | Spatial organization and display of enterprise operational integration information |
US20080099831A1 (en) * | 2006-10-31 | 2008-05-01 | Oki Electric Industry Co., Ltd. | Semiconductor memory device and method for the same |
US20080133582A1 (en) * | 2002-05-10 | 2008-06-05 | International Business Machines Corporation | Systems and computer program products to browse database query information |
US20080148189A1 (en) * | 2006-09-26 | 2008-06-19 | Istvan Szent-Miklosy | Systems and methods for providing a user interface |
US20080172630A1 (en) * | 2006-09-08 | 2008-07-17 | Microsoft Corporation | Graphical representation of aggregated data |
US20080183860A1 (en) * | 2007-01-31 | 2008-07-31 | Omniture, Inc. | Intelligent node positioning in a site analysis report |
CN100412767C (en) * | 2004-09-28 | 2008-08-20 | 鸿富锦精密工业(深圳)有限公司 | Information processing equipment and method |
US20080261660A1 (en) * | 2007-04-20 | 2008-10-23 | Huh Han Sol | Mobile terminal and screen displaying method thereof |
US20080276161A1 (en) * | 2007-02-10 | 2008-11-06 | James Matthew Slavens | Spreadsheet Rotating Cell Object |
US20080288866A1 (en) * | 2007-05-17 | 2008-11-20 | Spencer James H | Mobile device carrousel systems and methods |
US20080307362A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Desktop Filter |
US20080307359A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Grouping Graphical Representations of Objects in a User Interface |
US20080307335A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Object stack |
US20080307351A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Multi-Dimensional Application Environment |
US20080307303A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Overflow stack user interface |
US20080307334A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Visualization and interaction models |
US20080307330A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Visualization object divet |
US20090007272A1 (en) * | 2007-06-28 | 2009-01-01 | Microsoft Corporation | Identifying data associated with security issue attributes |
US20090007271A1 (en) * | 2007-06-28 | 2009-01-01 | Microsoft Corporation | Identifying attributes of aggregated data |
US7480663B2 (en) | 2004-06-22 | 2009-01-20 | International Business Machines Corporation | Model based optimization with focus regions |
US20090094556A1 (en) * | 2007-10-05 | 2009-04-09 | Autodesk, Inc. | User defined scenarios in a three dimensional geo-spatial system |
US7554541B2 (en) | 2002-06-28 | 2009-06-30 | Autodesk, Inc. | Widgets displayed and operable on a surface of a volumetric display enclosure |
US20090193149A1 (en) * | 2008-01-30 | 2009-07-30 | Microsoft Corporation | Synchronization of multidimensional data in a multimaster synchronization environment with prediction |
US20090259968A1 (en) * | 2008-04-15 | 2009-10-15 | Htc Corporation | Method for switching wallpaper in screen lock state, mobile electronic device thereof, and storage medium thereof |
US20090282369A1 (en) * | 2003-12-15 | 2009-11-12 | Quantum Matrix Holding, Llc | System and Method for Muulti-Dimensional Organization, Management, and Manipulation of Remote Data |
US20090281997A1 (en) * | 2006-07-25 | 2009-11-12 | Pankaj Jain | Method and a system for searching information using information device |
USD606083S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
USD606082S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
USD606081S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
US20090322754A1 (en) * | 2008-06-26 | 2009-12-31 | Microsoft Corporation | Static visualization of multiple-dimension data trends |
US20100049535A1 (en) * | 2008-08-20 | 2010-02-25 | Manoj Keshavmurthi Chari | Computer-Implemented Marketing Optimization Systems And Methods |
US20100077310A1 (en) * | 2003-10-23 | 2010-03-25 | Microsoft Corporation | Flexible architecture for notifying applications of state changes |
US20100088621A1 (en) * | 2008-10-03 | 2010-04-08 | Word Diamonds LLC | Graphically representing content relationships on a surface of graphical object |
US7720861B1 (en) | 2000-07-19 | 2010-05-18 | Vasudevan Software Inc. | Multimedia inspection database system (MIDaS) for dynamic run-time data evaluation |
US20100223295A1 (en) * | 2000-12-06 | 2010-09-02 | Io Informatics, Inc. | Applied Semantic Knowledgebases and Applications Thereof |
US20100250329A1 (en) * | 2009-03-26 | 2010-09-30 | Tugrul Sanli | Systems And Methods For Markdown Optimization When Inventory Pooling Level Is Above Pricing Level |
US20110035257A1 (en) * | 2009-08-06 | 2011-02-10 | Rajendra Singh Solanki | Systems And Methods For Generating Planograms In The Presence Of Multiple Objectives |
US20110040537A1 (en) * | 2009-08-17 | 2011-02-17 | Sap Ag | Simulation for a multi-dimensional analytical system |
US20110083078A1 (en) * | 2009-10-01 | 2011-04-07 | Ju Seok-Hoon | Mobile terminal and browsing method thereof |
US7930200B1 (en) | 2007-11-02 | 2011-04-19 | Sas Institute Inc. | Computer-implemented systems and methods for cross-price analysis |
US20110105192A1 (en) * | 2009-11-03 | 2011-05-05 | Lg Electronics Inc. | Terminal and control method thereof |
US20110153548A1 (en) * | 2009-12-17 | 2011-06-23 | Varghese Lal Samuel | Optimizing data transfer time on graphics processor units |
US20110167385A1 (en) * | 2010-01-06 | 2011-07-07 | France Telecom | Processing of data for improved display |
US8000996B1 (en) | 2007-04-10 | 2011-08-16 | Sas Institute Inc. | System and method for markdown optimization |
US8032533B1 (en) | 2005-01-14 | 2011-10-04 | Thomson Reuters Global Resources | Systems, methods, and software for researching statutory information |
US8160917B1 (en) | 2007-04-13 | 2012-04-17 | Sas Institute Inc. | Computer-implemented promotion optimization methods and systems |
US8204913B2 (en) | 2001-09-04 | 2012-06-19 | Timebase Pty Limited | Mapping of data from XML to SQL |
US20120254787A1 (en) * | 2011-03-29 | 2012-10-04 | Dusan Toman | Method and system for accessing data |
US20120317514A1 (en) * | 2008-04-30 | 2012-12-13 | Beyondvia Technologies | Systems and methods for digital images utilizing an infinite cylinder user interface |
US20130125007A1 (en) * | 2004-06-25 | 2013-05-16 | Apple Inc. | Remote Access to Layer and User Interface Elements |
US8515835B2 (en) | 2010-08-30 | 2013-08-20 | Sas Institute Inc. | Systems and methods for multi-echelon inventory planning with lateral transshipment |
US8676801B2 (en) | 2011-08-29 | 2014-03-18 | Sas Institute Inc. | Computer-implemented systems and methods for processing a multi-dimensional data structure |
US8688497B2 (en) | 2011-01-10 | 2014-04-01 | Sas Institute Inc. | Systems and methods for determining pack allocations |
US8745535B2 (en) | 2007-06-08 | 2014-06-03 | Apple Inc. | Multi-dimensional desktop |
US8788315B2 (en) | 2011-01-10 | 2014-07-22 | Sas Institute Inc. | Systems and methods for determining pack allocations |
US8805842B2 (en) | 2012-03-30 | 2014-08-12 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence, Ottawa | Method for displaying search results |
US8812338B2 (en) | 2008-04-29 | 2014-08-19 | Sas Institute Inc. | Computer-implemented systems and methods for pack optimization |
USD713851S1 (en) | 2014-05-02 | 2014-09-23 | Nike, Inc. | Display screen with graphical user interface |
USD714330S1 (en) * | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with graphical user interface |
USD714328S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD714327S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD714329S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD714326S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with graphical user interface |
USD715314S1 (en) | 2014-05-02 | 2014-10-14 | Nike, Inc. | Display screen with color graphical user interface |
USD715812S1 (en) | 2014-05-02 | 2014-10-21 | Nike, Inc. | Display screen with color graphical user interface |
USD715813S1 (en) | 2014-05-02 | 2014-10-21 | Nike, Inc. | Display screen with graphical user interface |
US8867807B1 (en) | 2011-09-23 | 2014-10-21 | Dr Systems, Inc. | Intelligent dynamic preloading and processing |
USD716822S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716820S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716821S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716823S1 (en) * | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD717812S1 (en) | 2014-05-02 | 2014-11-18 | Nike, Inc. | Display screen with color graphical user interface |
USD718319S1 (en) | 2014-05-02 | 2014-11-25 | Nike, Inc. | Display screen with color graphical user interface |
EP2824634A1 (en) * | 2013-07-09 | 2015-01-14 | Alcatel Lucent | Method and device for rotating a multidimensional space |
US8972348B2 (en) | 1999-10-04 | 2015-03-03 | Microsoft Corporation | Method and system for supporting off-line mode of operation and synchronization |
US20150089365A1 (en) * | 2013-09-25 | 2015-03-26 | Tiecheng Zhao | Advanced medical image processing wizard |
US9086785B2 (en) | 2007-06-08 | 2015-07-21 | Apple Inc. | Visualization object receptacle |
EP2916245A4 (en) * | 2014-01-22 | 2015-09-09 | Huawei Tech Co Ltd | Data processing device and data processing method |
US20150331555A1 (en) * | 2013-03-15 | 2015-11-19 | Inspace Technologies Limited | Three-dimensional space for navigating objects connected in hierarchy |
US20160034115A1 (en) * | 2013-03-13 | 2016-02-04 | Ganalila, Llc | Systems and methods for presenting and discovering relationships between information units |
US9417888B2 (en) | 2005-11-18 | 2016-08-16 | Apple Inc. | Management of user interface elements in a display environment |
US9483164B2 (en) | 2007-07-18 | 2016-11-01 | Apple Inc. | User-centric widgets and dashboards |
USD772288S1 (en) * | 2014-10-06 | 2016-11-22 | Vixlet LLC | Display screen with computer icons |
USD772928S1 (en) | 2014-10-06 | 2016-11-29 | Vixlet LLC | Display screen with computer icons |
USD772929S1 (en) * | 2014-10-06 | 2016-11-29 | Vixlet LLC | Display screen with icons |
US9513930B2 (en) | 2005-10-27 | 2016-12-06 | Apple Inc. | Workflow widgets |
USD774085S1 (en) | 2014-10-06 | 2016-12-13 | Vixlet LLC | Computer display with icons |
USD774086S1 (en) | 2014-10-06 | 2016-12-13 | Vixlet LLC | Display screen with computer icon |
USD775198S1 (en) * | 2014-10-06 | 2016-12-27 | Vixlet LLC | Display screen with icons |
US9595067B2 (en) | 2005-09-07 | 2017-03-14 | Reversevision, Inc. | Correcting errors in mortgage applications |
US20170300547A1 (en) * | 2016-04-14 | 2017-10-19 | Linkedln Corporation | Synchronizing hierarchical information while preserving team structure |
US10304126B2 (en) * | 2008-04-30 | 2019-05-28 | Beyondvia Technologies | Visual communication systems and methods designing and building entire experiences |
US10395762B1 (en) | 2011-06-14 | 2019-08-27 | Merge Healthcare Solutions Inc. | Customized presentation of data |
US10417198B1 (en) * | 2016-09-21 | 2019-09-17 | Well Fargo Bank, N.A. | Collaborative data mapping system |
US10503779B2 (en) | 2012-04-18 | 2019-12-10 | Ganalila, Llc | Association mapping game |
US10650092B2 (en) * | 2017-12-21 | 2020-05-12 | International Business Machines Corporation | Three-dimensional multi-vector tables |
USD898044S1 (en) * | 2019-03-01 | 2020-10-06 | Aristocrat Technologies Australia Pty Limited | Display screen or portion thereof with transitional graphical user interface |
US10854044B2 (en) | 2019-03-01 | 2020-12-01 | Aristocrat Technologies Australia Pty Limited | Controlling an electronic gaming machine to provide a bonus feature opportunity |
US10895973B2 (en) * | 2019-04-23 | 2021-01-19 | Google Llc | Browsing hierarchical datasets |
USD909399S1 (en) | 2019-03-01 | 2021-02-02 | Aristocrat Technologies Australia Pty Limited | Display screen or portion thereof with transitional graphical user interface |
USD914734S1 (en) * | 2018-02-05 | 2021-03-30 | St Engineering Land Systems Ltd | Display screen or portion thereof with graphical user interface |
USD916100S1 (en) * | 2019-04-04 | 2021-04-13 | Ansys, Inc. | Electronic visual display with graphical user interface for physics status and operations |
US11055951B2 (en) | 2019-03-01 | 2021-07-06 | Aristocrat Technologies Australia Pty Limited | Individual metamorphic linked jackpots |
US11074231B1 (en) | 2013-03-15 | 2021-07-27 | Informatica Llc | Validating modifications to mapping statements for processing hierarchical data structures |
USD931300S1 (en) | 2019-08-23 | 2021-09-21 | Aristocrat Technologies Australia Pty Limited | Display screen with animated graphical user interface |
US11244532B2 (en) | 2019-03-01 | 2022-02-08 | Aristocrat Technologies Australia Pty Limited | Digital lobby and multi-game metamorphics |
US11257318B2 (en) | 2019-08-07 | 2022-02-22 | Aristocrat Technologies, Inc. | Systems and techniques for providing animated leaderboards |
USD944845S1 (en) * | 2020-07-27 | 2022-03-01 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
WO2022093723A1 (en) * | 2020-10-29 | 2022-05-05 | Intrface Solutions Llc | Systems and methods for remote manipulation of multidimensional models |
WO2022212736A1 (en) * | 2021-03-31 | 2022-10-06 | Tableau Software, Inc. | Data visualization analytical canvas with functionally independent visual containers |
US11521462B2 (en) | 2018-10-05 | 2022-12-06 | Aristocrat Technologies, Inc. | Systems and methods for providing dynamic rewards |
US11636735B2 (en) | 2019-08-07 | 2023-04-25 | Aristocrat Technologies, Inc. | Sticky wilds feature for tournament gaming for electronic gaming machines and other computing devices |
US11763634B2 (en) | 2019-10-10 | 2023-09-19 | Aristocrat Technologies, Inc. | Tournament gaming for electronic gaming machines and other computing devices |
US11798356B2 (en) | 2018-10-05 | 2023-10-24 | Aristocrat Technologies, Inc. | Systems, apparatus, and methods for unlocking higher RTP games |
US11880378B2 (en) | 2021-03-31 | 2024-01-23 | Tableau Software, LLC | Data visualization analytical canvas with functionally independent visual containers |
US11887440B2 (en) | 2019-08-07 | 2024-01-30 | Aristocrat Technologies, Inc. | Tournament gaming system with all wins multiplier mode |
US11928930B2 (en) | 2018-10-05 | 2024-03-12 | Aristocrat Technologies, Inc. | Systems and methods for providing dynamic rewards |
US12118848B2 (en) | 2018-10-05 | 2024-10-15 | Aristocrat Technologies, Inc. | Systems, apparatus, and methods for unlocking higher RTP games |
US12229856B2 (en) | 2022-09-05 | 2025-02-18 | Salesforce, Inc. | Semantic alignment of text and visual cards to present time series metrics |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5295243A (en) * | 1989-12-29 | 1994-03-15 | Xerox Corporation | Display of hierarchical three-dimensional structures with rotating substructures |
US5414802A (en) * | 1991-01-17 | 1995-05-09 | Ricoh Company, Ltd. | Three-dimensional geometry processing system |
US5517602A (en) * | 1992-12-03 | 1996-05-14 | Hewlett-Packard Company | Method and apparatus for generating a topologically consistent visual representation of a three dimensional surface |
US5602978A (en) * | 1993-09-01 | 1997-02-11 | Lastinger; Carroll H. | Method and apparatus for a depth seamed three-dimensional visual environment |
US5666472A (en) * | 1992-11-06 | 1997-09-09 | Canon Kabushiki Kaisha | Image processing apparatus and method for generating polygons for use in rendering an object |
-
1996
- 1996-09-27 US US08/721,899 patent/US5767854A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5295243A (en) * | 1989-12-29 | 1994-03-15 | Xerox Corporation | Display of hierarchical three-dimensional structures with rotating substructures |
US5414802A (en) * | 1991-01-17 | 1995-05-09 | Ricoh Company, Ltd. | Three-dimensional geometry processing system |
US5666472A (en) * | 1992-11-06 | 1997-09-09 | Canon Kabushiki Kaisha | Image processing apparatus and method for generating polygons for use in rendering an object |
US5517602A (en) * | 1992-12-03 | 1996-05-14 | Hewlett-Packard Company | Method and apparatus for generating a topologically consistent visual representation of a three dimensional surface |
US5602978A (en) * | 1993-09-01 | 1997-02-11 | Lastinger; Carroll H. | Method and apparatus for a depth seamed three-dimensional visual environment |
Cited By (402)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966717A (en) * | 1996-12-20 | 1999-10-12 | Apple Computer, Inc. | Methods for importing data between database management programs |
US20070074107A1 (en) * | 1997-01-31 | 2007-03-29 | Timebase Pty Limited | Maltweb multi-axis viewing interface and higher level scoping |
US8972846B2 (en) | 1997-01-31 | 2015-03-03 | Timebase Pty Limited | MALTweb multi-axis viewing interface and higher level scoping |
US20070067715A1 (en) * | 1997-01-31 | 2007-03-22 | Timebase Pty Limited | MALTweb multi-axis viewing interface and higher level scoping |
US8983955B2 (en) | 1997-01-31 | 2015-03-17 | Timebase Pty Limited | Maltweb multi-axis viewing interface and higher level scoping |
US8386484B2 (en) | 1997-01-31 | 2013-02-26 | Timebase Pty Limited | Maltweb multi-axis viewing interface and higher level scoping |
US6292810B1 (en) * | 1997-03-03 | 2001-09-18 | Richard Steele Richards | Polymorphic enhanced modeling |
WO1999052044A1 (en) * | 1997-03-20 | 1999-10-14 | Thought, Inc. | A system and method for accessing data stores as objects |
US5857197A (en) * | 1997-03-20 | 1999-01-05 | Thought Inc. | System and method for accessing data stores as objects |
US6281898B1 (en) * | 1997-05-16 | 2001-08-28 | Philips Electronics North America Corporation | Spatial browsing approach to multimedia information retrieval |
US5943668A (en) * | 1997-06-30 | 1999-08-24 | International Business Machines Corporation | Relational emulation of a multi-dimensional database |
US6122636A (en) * | 1997-06-30 | 2000-09-19 | International Business Machines Corporation | Relational emulation of a multi-dimensional database index |
US5897642A (en) * | 1997-07-14 | 1999-04-27 | Microsoft Corporation | Method and system for integrating an object-based application with a version control system |
US6208987B1 (en) * | 1997-07-15 | 2001-03-27 | Nec Corporation | Hierarchically structured indexed information retrieval system |
US5886700A (en) * | 1997-07-24 | 1999-03-23 | The United States Of America As Represented By The Secretary Of The Navy | Three-dimensional volume selection tool |
US6073140A (en) * | 1997-07-29 | 2000-06-06 | Acxiom Corporation | Method and system for the creation, enhancement and update of remote data using persistent keys |
US6523041B1 (en) | 1997-07-29 | 2003-02-18 | Acxiom Corporation | Data linking system and method using tokens |
US6005578A (en) * | 1997-09-25 | 1999-12-21 | Mindsphere, Inc. | Method and apparatus for visual navigation of information objects |
US6014671A (en) * | 1998-04-14 | 2000-01-11 | International Business Machines Corporation | Interactive retrieval and caching of multi-dimensional data using view elements |
WO1999057890A1 (en) * | 1998-05-07 | 1999-11-11 | Hitachi, Ltd. | Method for selecting information signal and device therefor, image information display having the device, and remote controller |
US6728724B1 (en) * | 1998-05-18 | 2004-04-27 | Microsoft Corporation | Method for comparative visual rendering of data |
US7158992B2 (en) * | 1998-05-18 | 2007-01-02 | Microsoft Corporation | Method for comparative visual rendering of data |
US20040181507A1 (en) * | 1998-05-18 | 2004-09-16 | Eran Megiddo | Method for comparative visual rendering of data |
US20110179379A1 (en) * | 1998-06-29 | 2011-07-21 | At&T Labs, Inc. | Emergency facility information system and methods |
US20070156661A1 (en) * | 1998-06-29 | 2007-07-05 | At&T Labs, Inc. | Emergency facility information system and methods |
US7921096B2 (en) * | 1998-06-29 | 2011-04-05 | At&T Labs, Inc. | Emergency facility information system and methods |
US6282546B1 (en) * | 1998-06-30 | 2001-08-28 | Cisco Technology, Inc. | System and method for real-time insertion of data into a multi-dimensional database for network intrusion detection and vulnerability assessment |
US6366293B1 (en) | 1998-09-29 | 2002-04-02 | Rockwell Software Inc. | Method and apparatus for manipulating and displaying graphical objects in a computer display device |
US6362839B1 (en) | 1998-09-29 | 2002-03-26 | Rockwell Software Inc. | Method and apparatus for displaying mechanical emulation with graphical objects in an object oriented computing environment |
US6559860B1 (en) * | 1998-09-29 | 2003-05-06 | Rockwell Software Inc. | Method and apparatus for joining and manipulating graphical objects in a graphical user interface |
US20040004629A1 (en) * | 1998-09-29 | 2004-01-08 | Hamilton Jeffrey L. | System and methodology providing graphical objects in an industrial automation environment |
FR2784208A1 (en) * | 1998-10-02 | 2000-04-07 | Mark Asch | Interactive procedure and system for the artificial representation of multiple digital data fluxes allowing the user to establish relationships between different elements of the data flux |
US7110998B1 (en) * | 1998-10-13 | 2006-09-19 | Virtual Gold, Inc. | Method and apparatus for finding hidden patterns in the context of querying applications |
US6317750B1 (en) * | 1998-10-26 | 2001-11-13 | Hyperion Solutions Corporation | Method and apparatus for accessing multidimensional data |
US6260046B1 (en) | 1998-12-02 | 2001-07-10 | Pitney Bowes Inc. | Product architecture retrieval information system |
US6304871B1 (en) * | 1998-12-18 | 2001-10-16 | International Business Machines Corporation | Method and system for characterizing applications for use with databases having structured query language interfaces |
US7233952B1 (en) | 1999-01-15 | 2007-06-19 | Hon Hai Precision Industry, Ltd. | Apparatus for visualizing information in a data warehousing environment |
US7007029B1 (en) | 1999-01-15 | 2006-02-28 | Metaedge Corporation | System for visualizing information in a data warehousing environment |
US7320001B1 (en) | 1999-01-15 | 2008-01-15 | Hon Hai Precision Industry, Ltd. | Method for visualizing information in a data warehousing environment |
EP1190348A1 (en) * | 1999-05-12 | 2002-03-27 | Proclarity Corporation | Navigating data points in a multidimensional database |
EP1190348A4 (en) * | 1999-05-12 | 2004-08-18 | Proclarity Corp | Navigating data points in a multidimensional database |
US8799209B2 (en) | 1999-08-04 | 2014-08-05 | Yanicklo Technology Limited Liability Company | Data aggregation module supporting dynamic query responsive aggregation during the servicing of database query requests provided by one or more client machines |
US7392248B2 (en) | 1999-08-04 | 2008-06-24 | Hyperroll Israel, Ltd. | Data aggregation server supporting rapid query response with sparse multi-dimensional data |
US20030200221A1 (en) * | 1999-08-04 | 2003-10-23 | Reuven Bakalash | Stand-alone cartridge-style data aggregation server |
US20100185581A1 (en) * | 1999-08-04 | 2010-07-22 | Hyperroll, Inc. | Data aggregation module supporting dynamic query responsive aggregation during the servicing of database query requests provided by one or more client machines |
US20050060326A1 (en) * | 1999-08-04 | 2005-03-17 | Reuven Bakalash | Stand-alone cartridge-style data aggregation server and method of and system for managing multi-dimensional databases using the same |
US8788453B2 (en) | 1999-08-04 | 2014-07-22 | Yanicklo Technology Limited Liability Company | Data aggregation module supporting dynamic query responsive aggregation during the servicing of database query requests provided by one or more client machines |
US8041670B2 (en) | 1999-08-04 | 2011-10-18 | Yanicklo Technology Limited Liability Company | Data aggregation module supporting dynamic query responsive aggregation during the servicing of database query requests provided by one or more client machines |
US8463736B2 (en) | 1999-08-04 | 2013-06-11 | Yanicklo Technology Limited Liability Company | Relational database management system having integrated non-relational multi-dimensional data store of aggregated data elements |
US6462763B1 (en) | 1999-08-24 | 2002-10-08 | Spotware Technologies, Inc. | Method, system, and software for tracking moving hotspots with a static or moving cursor |
US6898530B1 (en) | 1999-09-30 | 2005-05-24 | Battelle Memorial Institute | Method and apparatus for extracting attributes from sequence strings and biopolymer material |
US6990238B1 (en) | 1999-09-30 | 2006-01-24 | Battelle Memorial Institute | Data processing, analysis, and visualization system for use with disparate data types |
US20060093222A1 (en) * | 1999-09-30 | 2006-05-04 | Battelle Memorial Institute | Data processing, analysis, and visualization system for use with disparate data types |
US7106329B1 (en) | 1999-09-30 | 2006-09-12 | Battelle Memorial Institute | Methods and apparatus for displaying disparate types of information using an interactive surface map |
US8972348B2 (en) | 1999-10-04 | 2015-03-03 | Microsoft Corporation | Method and system for supporting off-line mode of operation and synchronization |
US7134095B1 (en) | 1999-10-20 | 2006-11-07 | Gateway, Inc. | Simulated three-dimensional navigational menu system |
US6816853B1 (en) | 1999-11-08 | 2004-11-09 | Oracle International Corporation | Method and system for efficiently evaluating a query against partitioned data |
US6421666B1 (en) * | 1999-11-08 | 2002-07-16 | Oracle Corporation | Mechanism for sharing ancillary data between a family of related functions |
US20050060325A1 (en) * | 2000-02-28 | 2005-03-17 | Reuven Bakalash | Method of and apparatus for data aggregation utilizing a multidimensional database and multi-stage data aggregation operations |
US20050149491A1 (en) * | 2000-02-28 | 2005-07-07 | Reuven Bakalash | Database management system having data aggregation module integrated therein |
US20070233644A1 (en) * | 2000-02-28 | 2007-10-04 | Reuven Bakalash | System with a data aggregation module generating aggregated data for responding to OLAP analysis queries in a user transparent manner |
US7333982B2 (en) | 2000-02-28 | 2008-02-19 | Hyperroll Israel, Ltd. | Information system having a mode of operation in which queries form one or more clients are serviced using aggregated data retrieved from a plurality of different types of data storage structures for improved query performance |
US7315849B2 (en) | 2000-02-28 | 2008-01-01 | Hyperroll Israel, Ltd. | Enterprise-wide data-warehouse with integrated data aggregation engine |
US20030229652A1 (en) * | 2000-02-28 | 2003-12-11 | Reuven Bakalash | Enterprise-wide data-warehouse with integrated data aggregation engine |
US8452804B2 (en) | 2000-02-28 | 2013-05-28 | Yanicklo Technology Limited Liability Company | Database management system (DBMS) employing a relational datastore and a multi-dimensional database (MDDB) for servicing query statements in a manner transparent to client machine |
US8321373B2 (en) | 2000-02-28 | 2012-11-27 | Yanicklo Technology Limited Liability | Method of servicing query statements from a client machine using a database management system (DBMS) employing a relational datastore and a multi-dimensional database (MDDB) |
US20080021864A1 (en) * | 2000-02-28 | 2008-01-24 | Reuven Bakalash | Database management system (DBMS) employing a relational datastore and a multi-dimensional database (MDDB) for servicing query statements in a manner transparent to client machine |
US8195602B2 (en) | 2000-02-28 | 2012-06-05 | Yanicklo Technology Limited Liability Company | Relational database management system (RDBMS) employing a relational datastore and a multi-dimensional database (MDDB) for serving query statements from client machines |
US8170984B2 (en) | 2000-02-28 | 2012-05-01 | Yanicklo Technology Limited Liability Company | System with a data aggregation module generating aggregated data for responding to OLAP analysis queries in a user transparent manner |
US8473450B2 (en) | 2000-02-28 | 2013-06-25 | Yanicklo Technology Limited Liability Company | Relational database management system (RDBMS) employing multi-dimensional database (MDDB) for servicing query statements through one or more client machines |
US20050055329A1 (en) * | 2000-02-28 | 2005-03-10 | Reuven Bakalash | Database management system having data aggregation module integrated therein |
WO2001084295A1 (en) * | 2000-04-28 | 2001-11-08 | NOLEN, James, A. III | Method and apparatus for three dimensional internet and computer file interface |
US6938218B1 (en) | 2000-04-28 | 2005-08-30 | James Nolen | Method and apparatus for three dimensional internet and computer file interface |
US20010037228A1 (en) * | 2000-05-05 | 2001-11-01 | Iaf Consulting, Inc. | System and method for using metadata to flexibly analyze data |
US8650211B2 (en) | 2000-07-19 | 2014-02-11 | Vasudevan Software Inc. | Multimedia inspection database system (MIDaS) for dynamic run-time data evaluation |
US7720861B1 (en) | 2000-07-19 | 2010-05-18 | Vasudevan Software Inc. | Multimedia inspection database system (MIDaS) for dynamic run-time data evaluation |
US8082268B2 (en) | 2000-07-19 | 2011-12-20 | Vasudevan Software, Inc. | Multimedia inspection database system (MIDAS) for dynamic run-time data evaluation |
US20100299304A1 (en) * | 2000-07-19 | 2010-11-25 | Vasudevan Software Inc. | Multimedia inspection database system (midas) for dynamic run-time data evaluation |
EP1186987A3 (en) * | 2000-09-07 | 2003-04-02 | Sony Corporation | Apparatus for displaying information |
EP1186987A2 (en) * | 2000-09-07 | 2002-03-13 | Sony Corporation | Apparatus for displaying information |
US6880132B2 (en) | 2000-09-07 | 2005-04-12 | Sony Corporation | Method and apparatus for arranging and displaying files or folders in a three-dimensional body |
US6940509B1 (en) | 2000-09-29 | 2005-09-06 | Battelle Memorial Institute | Systems and methods for improving concept landscape visualizations as a data analysis tool |
US6718336B1 (en) | 2000-09-29 | 2004-04-06 | Battelle Memorial Institute | Data import system for data analysis system |
US20020198858A1 (en) * | 2000-12-06 | 2002-12-26 | Biosentients, Inc. | System, method, software architecture, and business model for an intelligent object based information technology platform |
US20040003132A1 (en) * | 2000-12-06 | 2004-01-01 | Biosentients, Inc. | Data pool architecture, system, and method for intelligent object data in heterogeneous data environments |
US20100223295A1 (en) * | 2000-12-06 | 2010-09-02 | Io Informatics, Inc. | Applied Semantic Knowledgebases and Applications Thereof |
US6988109B2 (en) | 2000-12-06 | 2006-01-17 | Io Informatics, Inc. | System, method, software architecture, and business model for an intelligent object based information technology platform |
US7702639B2 (en) | 2000-12-06 | 2010-04-20 | Io Informatics, Inc. | System, method, software architecture, and business model for an intelligent object based information technology platform |
US20050289166A1 (en) * | 2000-12-06 | 2005-12-29 | Io Informatics | System, method, software architecture, and business model for an intelligent object based information technology platform |
US20020122078A1 (en) * | 2000-12-07 | 2002-09-05 | Markowski Michael J. | System and method for organizing, navigating and analyzing data |
WO2002047311A2 (en) * | 2000-12-07 | 2002-06-13 | Newsgrade Corporation | System and method for organizing, navigating and analyzing data |
WO2002047311A3 (en) * | 2000-12-07 | 2003-01-16 | Newsgrade Corp | System and method for organizing, navigating and analyzing data |
EP1346503A4 (en) * | 2000-12-07 | 2006-05-31 | Newsgrade Corp | SYSTEM AND METHOD FOR ORGANIZATION, NAVIGATION AND DATA ANALYSIS |
EP1346503A2 (en) * | 2000-12-07 | 2003-09-24 | Newsgrade Corporation | System and method for organizing, navigating and analyzing data |
WO2002071198A2 (en) * | 2001-03-07 | 2002-09-12 | Siemens Aktiengesellschaft | Positioning of areas displayed on a user interface |
US20040141008A1 (en) * | 2001-03-07 | 2004-07-22 | Alexander Jarczyk | Positioning of areas displayed on a user interface |
WO2002071198A3 (en) * | 2001-03-07 | 2003-10-30 | Siemens Ag | Positioning of areas displayed on a user interface |
US20040049522A1 (en) * | 2001-04-09 | 2004-03-11 | Health Language, Inc. | Method and system for interfacing with a multi-level data structure |
US7668737B2 (en) | 2001-04-09 | 2010-02-23 | Health Language, Inc. | Method and system for interfacing with a multi-level data structure |
US6993529B1 (en) * | 2001-06-01 | 2006-01-31 | Revenue Science, Inc. | Importing data using metadata |
US20030041305A1 (en) * | 2001-07-18 | 2003-02-27 | Christoph Schnelle | Resilient data links |
US8396901B2 (en) | 2001-09-04 | 2013-03-12 | Timebase Pty Limited | Mapping of data from XML to SQL |
US8738667B2 (en) | 2001-09-04 | 2014-05-27 | Timebase Pty Limited | Mapping of data from XML to SQL |
US8204913B2 (en) | 2001-09-04 | 2012-06-19 | Timebase Pty Limited | Mapping of data from XML to SQL |
US8719071B2 (en) * | 2001-10-11 | 2014-05-06 | Adobe Systems Incorporated | System, method and computer program product for processing and visualization of information |
US9710815B2 (en) * | 2001-10-11 | 2017-07-18 | Adobe Systems Incorporated | System, method, and computer program product for processing and visualization of information |
US20030144868A1 (en) * | 2001-10-11 | 2003-07-31 | Macintyre James W. | System, method, and computer program product for processing and visualization of information |
US8660869B2 (en) | 2001-10-11 | 2014-02-25 | Adobe Systems Incorporated | System, method, and computer program product for processing and visualization of information |
US20080208910A1 (en) * | 2001-10-11 | 2008-08-28 | Visual Sciences Technologies, Llc | System, method, and computer program product for processing and visualization of information |
US20080275744A1 (en) * | 2001-10-11 | 2008-11-06 | Visual Sciences Technologies, Llc | System, method and computer program product for processing and visualization of information |
US20080021916A1 (en) * | 2001-11-16 | 2008-01-24 | Timebase Pty Limited | Maintenance of a markup language document in a database |
US7701441B2 (en) | 2002-01-25 | 2010-04-20 | Autodesk, Inc. | Techniques for pointing to locations within a volumetric display |
US20060077212A1 (en) * | 2002-01-25 | 2006-04-13 | Alias Systems Corp. | Graphical user interface widgets viewable and readable from multiple viewpoints in a volumetric display |
US7839400B2 (en) | 2002-01-25 | 2010-11-23 | Autodesk, Inc. | Volume management system for volumetric displays |
US20040207599A1 (en) * | 2002-01-25 | 2004-10-21 | Silicon Graphics, Inc. | Three dimensional volumetric display input and output configurations |
US20080036738A1 (en) * | 2002-01-25 | 2008-02-14 | Ravin Balakrishnan | Techniques for pointing to locations within a volumetric display |
US20080284729A1 (en) * | 2002-01-25 | 2008-11-20 | Silicon Graphics, Inc | Three dimensional volumetric display input and output configurations |
US7724251B2 (en) | 2002-01-25 | 2010-05-25 | Autodesk, Inc. | System for physical rotation of volumetric display enclosures to facilitate viewing |
US7324085B2 (en) | 2002-01-25 | 2008-01-29 | Autodesk, Inc. | Techniques for pointing to locations within a volumetric display |
US20050275628A1 (en) * | 2002-01-25 | 2005-12-15 | Alias Systems Corp. | System for physical rotation of volumetric display enclosures to facilitate viewing |
US9195301B2 (en) | 2002-01-25 | 2015-11-24 | Autodesk, Inc. | Three dimensional volumetric display input and output configurations |
US6753847B2 (en) | 2002-01-25 | 2004-06-22 | Silicon Graphics, Inc. | Three dimensional volumetric display input and output configurations |
US7205991B2 (en) | 2002-01-25 | 2007-04-17 | Autodesk, Inc. | Graphical user interface widgets viewable and readable from multiple viewpoints in a volumetric display |
US20030142092A1 (en) * | 2002-01-25 | 2003-07-31 | Silicon Graphics, Inc. | Graphical user interface widgets viewable and readable from multiple viewpoints in a volumetric display |
US7583252B2 (en) | 2002-01-25 | 2009-09-01 | Autodesk, Inc. | Three dimensional volumetric display input and output configurations |
US7528823B2 (en) | 2002-01-25 | 2009-05-05 | Autodesk, Inc. | Techniques for pointing to locations within a volumetric display |
US20050208970A1 (en) * | 2002-02-01 | 2005-09-22 | Microsoft Corporation | Method and system for managing changes to a contact database |
US10409829B2 (en) | 2002-02-01 | 2019-09-10 | Microsoft Technology Licensing, Llc | Method and system for managing changes to a contact database |
US20050208971A1 (en) * | 2002-02-01 | 2005-09-22 | Microsoft Corporation | Method and system for managing changes to a contact database |
US8676178B2 (en) | 2002-02-01 | 2014-03-18 | Microsoft Corporation | Method and system for managing changes to a contact database |
US9065902B2 (en) | 2002-02-01 | 2015-06-23 | Microsoft Technology Licensing, Llc | Method and system for managing changes to a contact database |
US7904327B2 (en) | 2002-04-30 | 2011-03-08 | Sas Institute Inc. | Marketing optimization system |
US20040093296A1 (en) * | 2002-04-30 | 2004-05-13 | Phelan William L. | Marketing optimization system |
US20030210284A1 (en) * | 2002-05-10 | 2003-11-13 | Government Of The United States Of America | Navigational display of hierarchically structured data |
US20080133582A1 (en) * | 2002-05-10 | 2008-06-05 | International Business Machines Corporation | Systems and computer program products to browse database query information |
US7873664B2 (en) | 2002-05-10 | 2011-01-18 | International Business Machines Corporation | Systems and computer program products to browse database query information |
US20060106833A1 (en) * | 2002-05-10 | 2006-05-18 | International Business Machines Corporation | Systems, methods, and computer program products to reduce computer processing in grid cell size determination for indexing of multidimensional databases |
US6839719B2 (en) * | 2002-05-14 | 2005-01-04 | Time Industrial, Inc. | Systems and methods for representing and editing multi-dimensional data |
WO2003107120A3 (en) * | 2002-06-13 | 2009-06-18 | Dimensional Pharm Inc | Methods, systems, and computer program products for representing object relationships in a multidimensional space |
WO2003107120A2 (en) * | 2002-06-13 | 2003-12-24 | 3-Dimensional Pharmaceuticals, Inc. | Methods, systems, and computer program products for representing object relationships in a multidimensional space |
US20060178831A1 (en) * | 2002-06-13 | 2006-08-10 | Agrafiotis Dimitris K | Methods, systems, and computer program products for representing object realtionships in a multidimensional space |
US7554541B2 (en) | 2002-06-28 | 2009-06-30 | Autodesk, Inc. | Widgets displayed and operable on a surface of a volumetric display enclosure |
US20060125822A1 (en) * | 2002-06-28 | 2006-06-15 | Alias Systems Corp. | Volume management system for volumetric displays |
US7986318B2 (en) | 2002-06-28 | 2011-07-26 | Autodesk, Inc. | Volume management system for volumetric displays |
US7138997B2 (en) | 2002-06-28 | 2006-11-21 | Autodesk, Inc. | System for physical rotation of volumetric display enclosures to facilitate viewing |
US7428545B2 (en) * | 2002-07-10 | 2008-09-23 | Inferx Corporation | Knowledge inferencing and data visualization method and system |
US20040078378A1 (en) * | 2002-07-10 | 2004-04-22 | Jerzy Bala | Knowledge inferencing and data visualization method and system |
US20040049730A1 (en) * | 2002-09-05 | 2004-03-11 | Beacon Information Technology Inc. | Data management system, method, and recording medium |
US7165214B2 (en) * | 2002-09-05 | 2007-01-16 | Beacon Information Technology Inc. | Data management system, method, and recording medium |
US20040117319A1 (en) * | 2002-09-30 | 2004-06-17 | Yasuhiro Oshima | Used article quotation method and system |
US20060010147A1 (en) * | 2002-10-18 | 2006-01-12 | Patrick Arras | Method and system for online analytical processing (olap) |
US20080183740A1 (en) * | 2002-10-18 | 2008-07-31 | Patrick Arras | Online analytical processing (olap) |
US7340476B2 (en) | 2002-10-18 | 2008-03-04 | International Business Machines Corporation | Method for online analytical processing (OLAP) |
US7774302B2 (en) | 2002-10-18 | 2010-08-10 | International Business Machines Corporation | Online analytical processing (OLAP) |
US7856458B2 (en) | 2002-10-18 | 2010-12-21 | International Business Machines Corporation | Online analytical processing (OLAP) |
WO2004042686A3 (en) * | 2002-11-04 | 2004-12-16 | Honeywell Int Inc | Methods and apparatus for displaying mutiple data categories |
US20040085319A1 (en) * | 2002-11-04 | 2004-05-06 | Gannon Aaron J. | Methods and apparatus for displaying multiple data categories |
WO2004042686A2 (en) * | 2002-11-04 | 2004-05-21 | Honeywell International Inc. | Methods and apparatus for displaying mutiple data categories |
US7158136B2 (en) | 2002-11-04 | 2007-01-02 | Honeywell International, Inc. | Methods and apparatus for displaying multiple data categories |
US20040122646A1 (en) * | 2002-12-18 | 2004-06-24 | International Business Machines Corporation | System and method for automatically building an OLAP model in a relational database |
US7716167B2 (en) | 2002-12-18 | 2010-05-11 | International Business Machines Corporation | System and method for automatically building an OLAP model in a relational database |
US20040119712A1 (en) * | 2002-12-19 | 2004-06-24 | Kenknight Bruce H. | System and method for representing multi-dimensional patient health |
US20040139061A1 (en) * | 2003-01-13 | 2004-07-15 | International Business Machines Corporation | Method, system, and program for specifying multidimensional calculations for a relational OLAP engine |
US7953694B2 (en) | 2003-01-13 | 2011-05-31 | International Business Machines Corporation | Method, system, and program for specifying multidimensional calculations for a relational OLAP engine |
US8051373B2 (en) * | 2003-02-28 | 2011-11-01 | Microsoft Corporation | Method and system for converting a schema-based hierarchical data structure into a flat data structure |
US20060117251A1 (en) * | 2003-02-28 | 2006-06-01 | Microsoft Corporation | Method and system for converting a schema-based hierarchical data structure into a flat data structure |
US20040215626A1 (en) * | 2003-04-09 | 2004-10-28 | International Business Machines Corporation | Method, system, and program for improving performance of database queries |
US7895191B2 (en) | 2003-04-09 | 2011-02-22 | International Business Machines Corporation | Improving performance of database queries |
US20040248066A1 (en) * | 2003-06-03 | 2004-12-09 | Recigno David T. | Dental appliance on-line ordering including display of end product image and mold three-dimensional scanning for digital transmission |
US20090023113A1 (en) * | 2003-06-03 | 2009-01-22 | Recigno Laboratories, Inc. | Dental Appliance On-Line Ordering Including Display Of End Product Image And Mold Three-Dimensional Scanning For Digital Transmission |
US20130025128A1 (en) * | 2003-06-03 | 2013-01-31 | Recigno Laboratories, Inc. | Dental Appliance On-Line Ordering Including Display Of End Product Image And Mold Three-Dimensional Scanning For Digital Transmission |
US20040267498A1 (en) * | 2003-06-27 | 2004-12-30 | Tang Ping T. | Method and apparatus for measuring accuracies of fixed-point computations |
US7031885B2 (en) * | 2003-06-27 | 2006-04-18 | Intel Corporation | Method and apparatus for measuring accuracies of fixed-point computations |
US20040268268A1 (en) * | 2003-06-30 | 2004-12-30 | Sylvia Scheu | Graphical access to data objects |
US7353457B2 (en) * | 2003-06-30 | 2008-04-01 | Sap Ag | Graphical access to data objects |
US20110035353A1 (en) * | 2003-10-17 | 2011-02-10 | Bailey Christopher D | Computer-Implemented Multidimensional Database Processing Method And System |
US20050131929A1 (en) * | 2003-10-17 | 2005-06-16 | Bailey Christopher D. | Computer-implemented multidimensional database processing method and system |
US7831615B2 (en) | 2003-10-17 | 2010-11-09 | Sas Institute Inc. | Computer-implemented multidimensional database processing method and system |
US8065262B2 (en) | 2003-10-17 | 2011-11-22 | Sas Institute Inc. | Computer-implemented multidimensional database processing method and system |
US8990695B2 (en) | 2003-10-23 | 2015-03-24 | Microsoft Technology Licensing, Llc | Flexible architecture for notifying applications of state changes |
US20100077310A1 (en) * | 2003-10-23 | 2010-03-25 | Microsoft Corporation | Flexible architecture for notifying applications of state changes |
US20050108749A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | Automatic content display apparatus and method |
US20050108752A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | 3-Dimensional browsing and selection apparatus and method |
US8024755B2 (en) | 2003-11-17 | 2011-09-20 | Sony Corporation | Interactive program guide with preferred items list apparatus and method |
US20050108756A1 (en) * | 2003-11-17 | 2005-05-19 | Sony Corporation, A Japanese Corporation | Interactive program guide with preferred items list apparatus and method |
US20090063552A1 (en) * | 2003-12-15 | 2009-03-05 | Quantum Matrix Holdings, Llc | System and Method for Multi-Dimensional Organization, Management, and Manipulation of Data |
US20090282369A1 (en) * | 2003-12-15 | 2009-11-12 | Quantum Matrix Holding, Llc | System and Method for Muulti-Dimensional Organization, Management, and Manipulation of Remote Data |
US8434027B2 (en) | 2003-12-15 | 2013-04-30 | Quantum Matrix Holdings, Llc | System and method for multi-dimensional organization, management, and manipulation of remote data |
US20050131924A1 (en) * | 2003-12-15 | 2005-06-16 | Quantum Matrix Holding, Llc | System and method for multi-dimensional organization, management, and manipulation of data |
US7433885B2 (en) * | 2003-12-15 | 2008-10-07 | Quantum Matrix Holdings, Llc | System and method for multi-dimensional organization, management, and manipulation of data |
US7707143B2 (en) | 2004-06-14 | 2010-04-27 | International Business Machines Corporation | Systems, methods, and computer program products that automatically discover metadata objects and generate multidimensional models |
US20050278290A1 (en) * | 2004-06-14 | 2005-12-15 | International Business Machines Corporation | Systems, methods, and computer program products that automatically discover metadata objects and generate multidimensional models |
US7480663B2 (en) | 2004-06-22 | 2009-01-20 | International Business Machines Corporation | Model based optimization with focus regions |
US20130125007A1 (en) * | 2004-06-25 | 2013-05-16 | Apple Inc. | Remote Access to Layer and User Interface Elements |
US9753627B2 (en) | 2004-06-25 | 2017-09-05 | Apple Inc. | Visual characteristics of user interface elements in a unified interest layer |
US10489040B2 (en) | 2004-06-25 | 2019-11-26 | Apple Inc. | Visual characteristics of user interface elements in a unified interest layer |
US9507503B2 (en) * | 2004-06-25 | 2016-11-29 | Apple Inc. | Remote access to layer and user interface elements |
US7818282B2 (en) | 2004-07-02 | 2010-10-19 | International Business Machines Corporation | System and method for the support of multilingual applications |
US20060004738A1 (en) * | 2004-07-02 | 2006-01-05 | Blackwell Richard F | System and method for the support of multilingual applications |
US20060005127A1 (en) * | 2004-07-02 | 2006-01-05 | Ferguson Kevin M | System and method of format specification |
US20060005112A1 (en) * | 2004-07-02 | 2006-01-05 | David Lilly | System and method of report layout |
US8904273B2 (en) * | 2004-07-02 | 2014-12-02 | International Business Machines Corporation | System and method of format specification |
US20060010114A1 (en) * | 2004-07-09 | 2006-01-12 | Marius Dumitru | Multidimensional database subcubes |
US7451137B2 (en) | 2004-07-09 | 2008-11-11 | Microsoft Corporation | Using a rowset as a query parameter |
US7490106B2 (en) | 2004-07-09 | 2009-02-10 | Microsoft Corporation | Multidimensional database subcubes |
US7694278B2 (en) | 2004-07-09 | 2010-04-06 | Microsoft Corporation | Data cube script development and debugging systems and methodologies |
US7533348B2 (en) | 2004-07-09 | 2009-05-12 | Microsoft Corporation | System that facilitates maintaining business calendars |
US20060010155A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | System that facilitates maintaining business calendars |
US20060020608A1 (en) * | 2004-07-09 | 2006-01-26 | Microsoft Corporation | Cube update tool |
US20060020921A1 (en) * | 2004-07-09 | 2006-01-26 | Microsoft Corporation | Data cube script development and debugging systems and methodologies |
US20060010112A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | Using a rowset as a query parameter |
US20060010058A1 (en) * | 2004-07-09 | 2006-01-12 | Microsoft Corporation | Multidimensional database currency conversion systems and methods |
US20060048076A1 (en) * | 2004-08-31 | 2006-03-02 | Microsoft Corporation | User Interface having a carousel view |
US8028250B2 (en) * | 2004-08-31 | 2011-09-27 | Microsoft Corporation | User interface having a carousel view for representing structured data |
CN100412767C (en) * | 2004-09-28 | 2008-08-20 | 鸿富锦精密工业(深圳)有限��司 | Information processing equipment and method |
US7660823B2 (en) | 2004-12-30 | 2010-02-09 | Sas Institute Inc. | Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format |
US7966322B2 (en) | 2004-12-30 | 2011-06-21 | Sas Institute Inc. | Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format |
US20080195608A1 (en) * | 2004-12-30 | 2008-08-14 | Lina Clover | Computer-Implemented System And Method For Visualizing OLAP And Multidimensional Data In A Calendar Format |
US20060149778A1 (en) * | 2004-12-30 | 2006-07-06 | Lina Clover | Computer-implemented system and method for visualizing OLAP and multidimensional data in a calendar format |
US8032533B1 (en) | 2005-01-14 | 2011-10-04 | Thomson Reuters Global Resources | Systems, methods, and software for researching statutory information |
US8458190B2 (en) | 2005-01-14 | 2013-06-04 | Thomson Reuters Global Resources | Systems, methods and software for researching statutory information |
US20060167924A1 (en) * | 2005-01-24 | 2006-07-27 | Microsoft Corporation | Diagrammatic access and arrangement of data |
KR101169096B1 (en) | 2005-01-24 | 2012-07-26 | 마이크로소프트 코포레이션 | Diagrammatic access and arrangement of data |
AU2005239627B2 (en) * | 2005-01-24 | 2010-12-02 | Microsoft Technology Licensing, Llc | Diagrammatic access and arrangement of data |
EP1684195A3 (en) * | 2005-01-24 | 2007-04-04 | Microsoft Corporation | Diagrammatic access and arrangement of data |
US7548925B2 (en) | 2005-01-24 | 2009-06-16 | Microsoft Corporation | Diagrammatic access and arrangement of data |
EP1684195A2 (en) * | 2005-01-24 | 2006-07-26 | Microsoft Corporation | Diagrammatic access and arrangement of data |
US20110119227A1 (en) * | 2005-02-22 | 2011-05-19 | Huifang Wang | System And Method For Graphically Distinguishing Levels Of A Multidimensional Database |
US20060190432A1 (en) * | 2005-02-22 | 2006-08-24 | Sas Institute Inc. | System and method for graphically distinguishing levels of a multidimensional database |
US7996378B2 (en) | 2005-02-22 | 2011-08-09 | Sas Institute Inc. | System and method for graphically distinguishing levels of a multidimensional database |
US20060224998A1 (en) * | 2005-03-30 | 2006-10-05 | Riss Uwe V | Multi-dimensional systems and controls |
US8127245B2 (en) * | 2005-03-30 | 2012-02-28 | Sap Ag | Multi-dimensional systems and controls |
US9595067B2 (en) | 2005-09-07 | 2017-03-14 | Reversevision, Inc. | Correcting errors in mortgage applications |
US11150781B2 (en) | 2005-10-27 | 2021-10-19 | Apple Inc. | Workflow widgets |
US9513930B2 (en) | 2005-10-27 | 2016-12-06 | Apple Inc. | Workflow widgets |
US9417888B2 (en) | 2005-11-18 | 2016-08-16 | Apple Inc. | Management of user interface elements in a display environment |
US8924415B2 (en) | 2006-02-28 | 2014-12-30 | Sap Se | Schema mapping and data transformation on the basis of a conceptual model |
US20070203922A1 (en) * | 2006-02-28 | 2007-08-30 | Thomas Susan M | Schema mapping and data transformation on the basis of layout and content |
US8234312B2 (en) * | 2006-02-28 | 2012-07-31 | Sap Ag | Schema mapping and data transformation on the basis of layout and content |
US20070203923A1 (en) * | 2006-02-28 | 2007-08-30 | Thomas Susan M | Schema mapping and data transformation on the basis of a conceptual model |
US8307012B2 (en) | 2006-02-28 | 2012-11-06 | Sap Ag | Schema mapping and data transformation on the basis of a conceptual model |
WO2007118228A2 (en) * | 2006-04-07 | 2007-10-18 | Midsoft Systems, Inc. | Method for importing, processing and displaying data in spreadsheets |
WO2007118228A3 (en) * | 2006-04-07 | 2009-03-26 | Midsoft Systems Inc | Method for importing, processing and displaying data in spreadsheets |
US20090281997A1 (en) * | 2006-07-25 | 2009-11-12 | Pankaj Jain | Method and a system for searching information using information device |
US8266131B2 (en) * | 2006-07-25 | 2012-09-11 | Pankaj Jain | Method and a system for searching information using information device |
US9147271B2 (en) | 2006-09-08 | 2015-09-29 | Microsoft Technology Licensing, Llc | Graphical representation of aggregated data |
US20080065646A1 (en) * | 2006-09-08 | 2008-03-13 | Microsoft Corporation | Enabling access to aggregated software security information |
US8234706B2 (en) | 2006-09-08 | 2012-07-31 | Microsoft Corporation | Enabling access to aggregated software security information |
US20080172630A1 (en) * | 2006-09-08 | 2008-07-17 | Microsoft Corporation | Graphical representation of aggregated data |
US20080148189A1 (en) * | 2006-09-26 | 2008-06-19 | Istvan Szent-Miklosy | Systems and methods for providing a user interface |
US20080129725A1 (en) * | 2006-09-29 | 2008-06-05 | Stambaugh Thomas M | Spatial organization and display of enterprise operational integration information |
US20080104531A1 (en) * | 2006-09-29 | 2008-05-01 | Stambaugh Thomas M | Spatial organization and display of enterprise operational integration information |
US20080099831A1 (en) * | 2006-10-31 | 2008-05-01 | Oki Electric Industry Co., Ltd. | Semiconductor memory device and method for the same |
US8099491B2 (en) | 2007-01-31 | 2012-01-17 | Adobe Systems Incorporated | Intelligent node positioning in a site analysis report |
US20080183860A1 (en) * | 2007-01-31 | 2008-07-31 | Omniture, Inc. | Intelligent node positioning in a site analysis report |
US20080276161A1 (en) * | 2007-02-10 | 2008-11-06 | James Matthew Slavens | Spreadsheet Rotating Cell Object |
US8000996B1 (en) | 2007-04-10 | 2011-08-16 | Sas Institute Inc. | System and method for markdown optimization |
US8160917B1 (en) | 2007-04-13 | 2012-04-17 | Sas Institute Inc. | Computer-implemented promotion optimization methods and systems |
US8681105B2 (en) * | 2007-04-20 | 2014-03-25 | Lg Electronics Inc. | Mobile terminal and screen displaying method thereof |
US20080261660A1 (en) * | 2007-04-20 | 2008-10-23 | Huh Han Sol | Mobile terminal and screen displaying method thereof |
US20080288866A1 (en) * | 2007-05-17 | 2008-11-20 | Spencer James H | Mobile device carrousel systems and methods |
US8892997B2 (en) | 2007-06-08 | 2014-11-18 | Apple Inc. | Overflow stack user interface |
US8745535B2 (en) | 2007-06-08 | 2014-06-03 | Apple Inc. | Multi-dimensional desktop |
US20080307359A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Grouping Graphical Representations of Objects in a User Interface |
US20080307335A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Object stack |
US20080307351A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Multi-Dimensional Application Environment |
US8381122B2 (en) * | 2007-06-08 | 2013-02-19 | Apple Inc. | Multi-dimensional application environment |
US20080307303A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Overflow stack user interface |
US20080307362A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Desktop Filter |
US20080307334A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Visualization and interaction models |
US8473859B2 (en) | 2007-06-08 | 2013-06-25 | Apple Inc. | Visualization and interaction models |
US20080307330A1 (en) * | 2007-06-08 | 2008-12-11 | Apple Inc. | Visualization object divet |
US11086495B2 (en) | 2007-06-08 | 2021-08-10 | Apple Inc. | Visualization object receptacle |
US8667418B2 (en) | 2007-06-08 | 2014-03-04 | Apple Inc. | Object stack |
US9086785B2 (en) | 2007-06-08 | 2015-07-21 | Apple Inc. | Visualization object receptacle |
US8302197B2 (en) | 2007-06-28 | 2012-10-30 | Microsoft Corporation | Identifying data associated with security issue attributes |
US20090007271A1 (en) * | 2007-06-28 | 2009-01-01 | Microsoft Corporation | Identifying attributes of aggregated data |
US20090007272A1 (en) * | 2007-06-28 | 2009-01-01 | Microsoft Corporation | Identifying data associated with security issue attributes |
US8250651B2 (en) | 2007-06-28 | 2012-08-21 | Microsoft Corporation | Identifying attributes of aggregated data |
US9483164B2 (en) | 2007-07-18 | 2016-11-01 | Apple Inc. | User-centric widgets and dashboards |
US8549439B2 (en) * | 2007-10-05 | 2013-10-01 | Autodesk, Inc. | Viewport overlays to expose alternate data representations |
US20090094558A1 (en) * | 2007-10-05 | 2009-04-09 | Howard Richard D | Viewport overlays to expose alternate data representations |
US20090094556A1 (en) * | 2007-10-05 | 2009-04-09 | Autodesk, Inc. | User defined scenarios in a three dimensional geo-spatial system |
US8914750B2 (en) | 2007-10-05 | 2014-12-16 | Autodesk, Inc. | User defined scenarios in a three dimensional geo-spatial system |
US7930200B1 (en) | 2007-11-02 | 2011-04-19 | Sas Institute Inc. | Computer-implemented systems and methods for cross-price analysis |
US20090193149A1 (en) * | 2008-01-30 | 2009-07-30 | Microsoft Corporation | Synchronization of multidimensional data in a multimaster synchronization environment with prediction |
US8078749B2 (en) | 2008-01-30 | 2011-12-13 | Microsoft Corporation | Synchronization of multidimensional data in a multimaster synchronization environment with prediction |
US20090259968A1 (en) * | 2008-04-15 | 2009-10-15 | Htc Corporation | Method for switching wallpaper in screen lock state, mobile electronic device thereof, and storage medium thereof |
US9230074B2 (en) * | 2008-04-15 | 2016-01-05 | Htc Corporation | Method for switching wallpaper in screen lock state, mobile electronic device thereof, and storage medium thereof |
US8812338B2 (en) | 2008-04-29 | 2014-08-19 | Sas Institute Inc. | Computer-implemented systems and methods for pack optimization |
US20120317514A1 (en) * | 2008-04-30 | 2012-12-13 | Beyondvia Technologies | Systems and methods for digital images utilizing an infinite cylinder user interface |
US10304126B2 (en) * | 2008-04-30 | 2019-05-28 | Beyondvia Technologies | Visual communication systems and methods designing and building entire experiences |
US9305026B2 (en) * | 2008-04-30 | 2016-04-05 | Beyondvia Technologies | Systems and methods for digital images utilizing an infinite cylinder user interface |
US8446412B2 (en) | 2008-06-26 | 2013-05-21 | Microsoft Corporation | Static visualization of multiple-dimension data trends |
US20090322754A1 (en) * | 2008-06-26 | 2009-12-31 | Microsoft Corporation | Static visualization of multiple-dimension data trends |
US8296182B2 (en) | 2008-08-20 | 2012-10-23 | Sas Institute Inc. | Computer-implemented marketing optimization systems and methods |
US20100049535A1 (en) * | 2008-08-20 | 2010-02-25 | Manoj Keshavmurthi Chari | Computer-Implemented Marketing Optimization Systems And Methods |
US10345990B2 (en) | 2008-10-03 | 2019-07-09 | Word Diamonds, Llc | Graphically representing content relationships on a surface of graphical object |
AU2016208388B2 (en) * | 2008-10-03 | 2018-03-22 | Word Diamonds LLC | Graphically representing content relationships on a surface of graphical object |
AU2018204393B2 (en) * | 2008-10-03 | 2020-03-19 | Word Diamonds LLC | Graphically representing content relationships on a surface of graphical object |
US8689143B2 (en) * | 2008-10-03 | 2014-04-01 | Word Diamonds, Llc | Graphically representing content relationships on a surface of graphical object |
US20100088621A1 (en) * | 2008-10-03 | 2010-04-08 | Word Diamonds LLC | Graphically representing content relationships on a surface of graphical object |
US9401045B2 (en) | 2008-10-03 | 2016-07-26 | Word Diamonds, Llc | Graphically representing content relationships on a surface of graphical object |
US11256383B2 (en) | 2008-10-03 | 2022-02-22 | Word Diamonds LLC | Graphically representing content relationships on a surface of graphical object |
USD606083S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
USD606081S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
USD606082S1 (en) * | 2008-12-03 | 2009-12-15 | Microsoft Corporation | User interface for a display screen |
US8271318B2 (en) | 2009-03-26 | 2012-09-18 | Sas Institute Inc. | Systems and methods for markdown optimization when inventory pooling level is above pricing level |
US20100250329A1 (en) * | 2009-03-26 | 2010-09-30 | Tugrul Sanli | Systems And Methods For Markdown Optimization When Inventory Pooling Level Is Above Pricing Level |
US20110035257A1 (en) * | 2009-08-06 | 2011-02-10 | Rajendra Singh Solanki | Systems And Methods For Generating Planograms In The Presence Of Multiple Objectives |
US20110040537A1 (en) * | 2009-08-17 | 2011-02-17 | Sap Ag | Simulation for a multi-dimensional analytical system |
US20110083078A1 (en) * | 2009-10-01 | 2011-04-07 | Ju Seok-Hoon | Mobile terminal and browsing method thereof |
US20110105192A1 (en) * | 2009-11-03 | 2011-05-05 | Lg Electronics Inc. | Terminal and control method thereof |
US8627236B2 (en) * | 2009-11-03 | 2014-01-07 | Lg Electronics Inc. | Terminal and control method thereof |
US8965866B2 (en) * | 2009-12-17 | 2015-02-24 | Business Objects Software Limited | Optimizing data transfer time on graphics processor units |
US20110153548A1 (en) * | 2009-12-17 | 2011-06-23 | Varghese Lal Samuel | Optimizing data transfer time on graphics processor units |
US20110167385A1 (en) * | 2010-01-06 | 2011-07-07 | France Telecom | Processing of data for improved display |
US8515835B2 (en) | 2010-08-30 | 2013-08-20 | Sas Institute Inc. | Systems and methods for multi-echelon inventory planning with lateral transshipment |
US8788315B2 (en) | 2011-01-10 | 2014-07-22 | Sas Institute Inc. | Systems and methods for determining pack allocations |
US8688497B2 (en) | 2011-01-10 | 2014-04-01 | Sas Institute Inc. | Systems and methods for determining pack allocations |
US20120254787A1 (en) * | 2011-03-29 | 2012-10-04 | Dusan Toman | Method and system for accessing data |
US10395762B1 (en) | 2011-06-14 | 2019-08-27 | Merge Healthcare Solutions Inc. | Customized presentation of data |
US8676801B2 (en) | 2011-08-29 | 2014-03-18 | Sas Institute Inc. | Computer-implemented systems and methods for processing a multi-dimensional data structure |
US10134126B2 (en) | 2011-09-23 | 2018-11-20 | D.R. Systems, Inc. | Intelligent dynamic preloading and processing |
US8867807B1 (en) | 2011-09-23 | 2014-10-21 | Dr Systems, Inc. | Intelligent dynamic preloading and processing |
US9323891B1 (en) | 2011-09-23 | 2016-04-26 | D.R. Systems, Inc. | Intelligent dynamic preloading and processing |
US8805842B2 (en) | 2012-03-30 | 2014-08-12 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence, Ottawa | Method for displaying search results |
US10503779B2 (en) | 2012-04-18 | 2019-12-10 | Ganalila, Llc | Association mapping game |
US11361024B2 (en) | 2012-04-18 | 2022-06-14 | Ganalila, Llc | Association mapping game |
US11079901B2 (en) * | 2013-03-13 | 2021-08-03 | Ganalila, Llc | Systems and methods for presenting and discovering relationships between information units |
US20160034115A1 (en) * | 2013-03-13 | 2016-02-04 | Ganalila, Llc | Systems and methods for presenting and discovering relationships between information units |
US20150331555A1 (en) * | 2013-03-15 | 2015-11-19 | Inspace Technologies Limited | Three-dimensional space for navigating objects connected in hierarchy |
US11074231B1 (en) | 2013-03-15 | 2021-07-27 | Informatica Llc | Validating modifications to mapping statements for processing hierarchical data structures |
US10452223B2 (en) * | 2013-03-15 | 2019-10-22 | Inspace Technologies Limited | Three-dimensional space for navigating objects connected in hierarchy |
WO2015004036A1 (en) * | 2013-07-09 | 2015-01-15 | Alcatel Lucent | Method and device for rotating a multidimensional space |
EP2824634A1 (en) * | 2013-07-09 | 2015-01-14 | Alcatel Lucent | Method and device for rotating a multidimensional space |
US10818048B2 (en) * | 2013-09-25 | 2020-10-27 | Terarecon, Inc. | Advanced medical image processing wizard |
US20180330525A1 (en) * | 2013-09-25 | 2018-11-15 | Tiecheng T. Zhao | Advanced medical image processing wizard |
US10025479B2 (en) * | 2013-09-25 | 2018-07-17 | Terarecon, Inc. | Advanced medical image processing wizard |
US20150089365A1 (en) * | 2013-09-25 | 2015-03-26 | Tiecheng Zhao | Advanced medical image processing wizard |
EP2916245A4 (en) * | 2014-01-22 | 2015-09-09 | Huawei Tech Co Ltd | Data processing device and data processing method |
USD715812S1 (en) | 2014-05-02 | 2014-10-21 | Nike, Inc. | Display screen with color graphical user interface |
USD715314S1 (en) | 2014-05-02 | 2014-10-14 | Nike, Inc. | Display screen with color graphical user interface |
USD713851S1 (en) | 2014-05-02 | 2014-09-23 | Nike, Inc. | Display screen with graphical user interface |
USD717812S1 (en) | 2014-05-02 | 2014-11-18 | Nike, Inc. | Display screen with color graphical user interface |
USD714328S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD714327S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD716823S1 (en) * | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716821S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716820S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD716822S1 (en) | 2014-05-02 | 2014-11-04 | Nike, Inc. | Display screen with graphical user interface |
USD715813S1 (en) | 2014-05-02 | 2014-10-21 | Nike, Inc. | Display screen with graphical user interface |
USD714329S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with color graphical user interface |
USD714330S1 (en) * | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with graphical user interface |
USD714326S1 (en) | 2014-05-02 | 2014-09-30 | Nike, Inc. | Display screen with graphical user interface |
USD718319S1 (en) | 2014-05-02 | 2014-11-25 | Nike, Inc. | Display screen with color graphical user interface |
USD772928S1 (en) | 2014-10-06 | 2016-11-29 | Vixlet LLC | Display screen with computer icons |
USD775198S1 (en) * | 2014-10-06 | 2016-12-27 | Vixlet LLC | Display screen with icons |
USD772929S1 (en) * | 2014-10-06 | 2016-11-29 | Vixlet LLC | Display screen with icons |
USD774086S1 (en) | 2014-10-06 | 2016-12-13 | Vixlet LLC | Display screen with computer icon |
USD774085S1 (en) | 2014-10-06 | 2016-12-13 | Vixlet LLC | Computer display with icons |
USD772288S1 (en) * | 2014-10-06 | 2016-11-22 | Vixlet LLC | Display screen with computer icons |
US10459944B2 (en) * | 2016-04-14 | 2019-10-29 | Microsoft Technology Licensing, Llc | Synchronizing hierarchical information while preserving team structure |
US20170300547A1 (en) * | 2016-04-14 | 2017-10-19 | Linkedln Corporation | Synchronizing hierarchical information while preserving team structure |
US10417198B1 (en) * | 2016-09-21 | 2019-09-17 | Well Fargo Bank, N.A. | Collaborative data mapping system |
US11593322B1 (en) | 2016-09-21 | 2023-02-28 | Wells Fargo Bank, N.A. | Collaborative data mapping system |
US11907184B1 (en) | 2016-09-21 | 2024-02-20 | Wells Fargo Bank, N.A. | Collaborative data mapping system |
US10650092B2 (en) * | 2017-12-21 | 2020-05-12 | International Business Machines Corporation | Three-dimensional multi-vector tables |
USD914734S1 (en) * | 2018-02-05 | 2021-03-30 | St Engineering Land Systems Ltd | Display screen or portion thereof with graphical user interface |
US11798356B2 (en) | 2018-10-05 | 2023-10-24 | Aristocrat Technologies, Inc. | Systems, apparatus, and methods for unlocking higher RTP games |
US11928930B2 (en) | 2018-10-05 | 2024-03-12 | Aristocrat Technologies, Inc. | Systems and methods for providing dynamic rewards |
US11521462B2 (en) | 2018-10-05 | 2022-12-06 | Aristocrat Technologies, Inc. | Systems and methods for providing dynamic rewards |
US12118848B2 (en) | 2018-10-05 | 2024-10-15 | Aristocrat Technologies, Inc. | Systems, apparatus, and methods for unlocking higher RTP games |
US11055951B2 (en) | 2019-03-01 | 2021-07-06 | Aristocrat Technologies Australia Pty Limited | Individual metamorphic linked jackpots |
US11790724B2 (en) | 2019-03-01 | 2023-10-17 | Aristocrat Technologies Australia Pty Limited | Individual metamorphic linked jackpots |
US12243377B2 (en) | 2019-03-01 | 2025-03-04 | Aristocrat Technologies Australia Pty Limited | Digital lobby and multi-game metamorphics |
US10854044B2 (en) | 2019-03-01 | 2020-12-01 | Aristocrat Technologies Australia Pty Limited | Controlling an electronic gaming machine to provide a bonus feature opportunity |
US11244532B2 (en) | 2019-03-01 | 2022-02-08 | Aristocrat Technologies Australia Pty Limited | Digital lobby and multi-game metamorphics |
US11462077B2 (en) | 2019-03-01 | 2022-10-04 | Aristocrat Technologies Australia Pty Limited | Controlling an electronic gaming machine to provide a bonus feature opportunity |
USD898044S1 (en) * | 2019-03-01 | 2020-10-06 | Aristocrat Technologies Australia Pty Limited | Display screen or portion thereof with transitional graphical user interface |
US11514746B2 (en) | 2019-03-01 | 2022-11-29 | Aristocrat Technologies Australia Pty Limited | Individual metamorphic linked jackpots |
USD909399S1 (en) | 2019-03-01 | 2021-02-02 | Aristocrat Technologies Australia Pty Limited | Display screen or portion thereof with transitional graphical user interface |
US12039831B2 (en) | 2019-03-01 | 2024-07-16 | Aristocrat Technologies Australia Pty Limited | Digital lobby and multi-game metamorphics |
USD916100S1 (en) * | 2019-04-04 | 2021-04-13 | Ansys, Inc. | Electronic visual display with graphical user interface for physics status and operations |
US11609691B2 (en) | 2019-04-23 | 2023-03-21 | Google Llc | Browsing hierarchical datasets |
US11893224B2 (en) | 2019-04-23 | 2024-02-06 | Google Llc | Browsing hierarchical datasets |
US10895973B2 (en) * | 2019-04-23 | 2021-01-19 | Google Llc | Browsing hierarchical datasets |
US11636735B2 (en) | 2019-08-07 | 2023-04-25 | Aristocrat Technologies, Inc. | Sticky wilds feature for tournament gaming for electronic gaming machines and other computing devices |
US12027008B2 (en) | 2019-08-07 | 2024-07-02 | Aristocrat Technologies, Inc. | Systems and techniques for providing animated leaderboards |
US11257318B2 (en) | 2019-08-07 | 2022-02-22 | Aristocrat Technologies, Inc. | Systems and techniques for providing animated leaderboards |
US12033471B2 (en) | 2019-08-07 | 2024-07-09 | Aristocrat Technologies, Inc. | Sticky wilds feature for tournament gaming for electronic gaming machines and other computing devices |
US11887440B2 (en) | 2019-08-07 | 2024-01-30 | Aristocrat Technologies, Inc. | Tournament gaming system with all wins multiplier mode |
US12165476B2 (en) | 2019-08-07 | 2024-12-10 | Aristocrat Technologies, Inc. | Tournament gaming system with all wins multiplier mode |
USD931300S1 (en) | 2019-08-23 | 2021-09-21 | Aristocrat Technologies Australia Pty Limited | Display screen with animated graphical user interface |
US11763634B2 (en) | 2019-10-10 | 2023-09-19 | Aristocrat Technologies, Inc. | Tournament gaming for electronic gaming machines and other computing devices |
USD944845S1 (en) * | 2020-07-27 | 2022-03-01 | Samsung Electronics Co., Ltd. | Display screen or portion thereof with graphical user interface |
WO2022093723A1 (en) * | 2020-10-29 | 2022-05-05 | Intrface Solutions Llc | Systems and methods for remote manipulation of multidimensional models |
US20240168966A1 (en) * | 2021-03-31 | 2024-05-23 | Tableau Software, LLC | Data Visualization Analytical Canvas with Functionally Independent Visual Containers |
US11880378B2 (en) | 2021-03-31 | 2024-01-23 | Tableau Software, LLC | Data visualization analytical canvas with functionally independent visual containers |
WO2022212736A1 (en) * | 2021-03-31 | 2022-10-06 | Tableau Software, Inc. | Data visualization analytical canvas with functionally independent visual containers |
US12229856B2 (en) | 2022-09-05 | 2025-02-18 | Salesforce, Inc. | Semantic alignment of text and visual cards to present time series metrics |
US12260478B2 (en) | 2022-09-05 | 2025-03-25 | Salesforce, Inc. | Visualization recommendations for time-series metrics presentations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5767854A (en) | Multidimensional data display and manipulation system and methods for using same | |
Ahlberg et al. | IVEE: An information visualization and exploration environment | |
US6831668B2 (en) | Analytical reporting on top of multidimensional data model | |
US6581068B1 (en) | System and method for instant consolidation, enrichment, delegation and reporting in a multidimensional database | |
US20060206512A1 (en) | Computer systems and methods for visualizing data with generation of marks | |
Eick | Visualizing multi-dimensional data | |
Mansmann et al. | Exploring OLAP aggregates with hierarchical visualization techniques | |
CA2526825A1 (en) | Computer systems and methods for the query and visualization of multidimensional databases | |
WO2005036334A2 (en) | Computer systems and methods for visualizing data | |
JP2001067486A (en) | System and method for visualizing multi-dimensional data in spreasheet and other data structure | |
Yang et al. | InterRing: a visual interface for navigating and manipulating hierarchies | |
WO2001037120A2 (en) | Programs and methods for the display, analysis and manipulation of multi-dimensional data | |
Kristiansen et al. | Visception: An interactive visual framework for nested visualization design | |
Weaver | Improvise: a user interface for interactive construction of highly-coordinated visualizations | |
Weaver | Multidimensional data dissection using attribute relationship graphs | |
WO1999044164A1 (en) | A multidimensional data display and manipulation system and methods for using same | |
Menin et al. | From linked data querying to visual search: towards a visualization pipeline for LOD exploration | |
Sifer | A visual interface technique for exploring OLAP data with coordinated dimension hierarchies | |
Zhang et al. | TimeSpiral, an enhanced interactive visual system for time series data | |
Weaver | Improvisational geovisualization of the 2000 united states census | |
Tian | Storage management issues for high performance database visualization | |
Ruby | Information Visualization for Financial Analysis | |
Wrobel et al. | Graphical User Interface Design for Climate Impact Research Data Retrieval | |
Nguyen et al. | Visualization method and tool for interactive learning of large decision trees | |
Hansen | A survey of systems in the diagrammatic visual data querying domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GENESIS PARK LP, TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:POLYVISTA, INC.;REEL/FRAME:011457/0662 Effective date: 20001221 Owner name: POLYVISTA, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANWAR, MOHAMMED S.;REEL/FRAME:011457/0683 Effective date: 20001219 |
|
AS | Assignment |
Owner name: POLYVISTA, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANWAR, MOHAMMED S.;REEL/FRAME:012134/0774 Effective date: 20001219 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: GENESIS PARK LP, TEXAS Free format text: UCC-1 FINANCING STATEMENT;ASSIGNOR:POLY VISTA, INC.;REEL/FRAME:013532/0530 Effective date: 20021118 Owner name: GENESIS PARK LP, TEXAS Free format text: UCC-1 FINANCING STATEMENT;ASSIGNOR:POLYVISTA, INC.;REEL/FRAME:013532/0520 Effective date: 20021118 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
AS | Assignment |
Owner name: POLYVISTA, INC., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:GENESIS PARK LP;TQ8 LP;SIGNING DATES FROM 20110801 TO 20110804;REEL/FRAME:026742/0939 |
|
AS | Assignment |
Owner name: GOOGLE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POLYVISTA, INC.;REEL/FRAME:027534/0918 Effective date: 20110812 |
|
AS | Assignment |
Owner name: GOOGLE LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:GOOGLE INC.;REEL/FRAME:044127/0735 Effective date: 20170929 |