4
$\begingroup$

In a recent preprint, I investigated $$S_p(x):=\prod_{k=1}^{(p-1)/2}(x-e^{2\pi ik^2/p}),$$ where $p$ is an odd prime and $x$ is a root of unity.

Motivated by Question 337879 and Question 338325, here I pose my conjecture on $$s_p:=S_p(e^{2\pi i/12})=\prod_{k=1}^{(p-1)/2}(e^{2\pi i/12}-e^{2\pi i k^2/p})$$ for primes $p>3$.

Conjecture. Let $p>3$ be a prime.

(i) If $p\equiv13\pmod{24}$, then $$s_p=i(-1)^{\frac{p-5}8+|\{1\le k<\frac p4:\ (\frac kp)=-1\}|}(x_p\sqrt3-y_p\sqrt p),$$ where $(\frac kp)$ is the Legendre symbol, and $(x_p,y_p)$ is the least positive integer solution to the diophantine equation $3x^2+1=py^2$.

(ii) When $p\equiv19\pmod{24}$, we may write $p=(4x)^2+3y^2$ with $x,y\in\mathbb Z$, and we have $$s_p=(-1)^{(p-19)/24+x}(1+i)\frac{1+\sqrt3}2.$$

(iii) If $p\equiv1,7\pmod{24}$, then $$(-1)^{\lfloor \frac{h(-p)}2\rfloor+|\{1\le k<\frac p{12}:\ (\frac kp)=1\}|} e^{2\pi i(p-1)/48}s_p>0,$$ where $h(-p)$ is the class number of the imaginary quadratic field $\mathbb Q(\sqrt {-p})$.

(iv) If $p\equiv5\pmod6$ but $p\not\equiv23\pmod{24}$, then $$(-1)^{\lfloor \frac{h(-p)}2\rfloor+|\{1\le k<\frac p{12}:\ (\frac kp)=1\}|} e^{2\pi i5(p-1)/48}s_p>0.$$ When $p\equiv 23\pmod{24}$, we have $$(-1)^{\lfloor \frac{h(-p)}2\rfloor+|\{1\le k<\frac p{12}:\ (\frac kp)=1\}|} e^{2\pi i5(p-1)/48}s_p<0.$$

I have checked my above conjecture numerically.

QUESTION. How to prove the conjecture? How to determine the exact value of $s_p$ for a general prime $p>3$ with $p\not\equiv13,19\pmod{24}$?

Your comments are welcome!

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.