1
$\begingroup$

Let $p$ be an odd prime. Here I introduce the sum $$S_p(c,d):=\sum_{x=0}^{(p-1)/2}\left(\frac{x^5+cx^3+dx}p\right)$$ with $c,d\in\mathbb Z$, where $(\frac{\cdot}p)$ is the Legendre symbol.

I have a series of conjectures on such sums. Here I state two general ones.

Conjecture 1. Let $p>7$ be a prime with $p\equiv 3\pmod4$, and let $c,d\in\mathbb Z$. If $S_p(c,d)=0$, then $$\left(\frac{c^2-4d}p\right)=1\not=\left(\frac dp\right).$$

Remark 1. I have verified this for all primes $7<p<1000$ with $p\equiv3\pmod4$. Note that $S_3(1,1)=0$ but $(\frac{1^2-4\cdot1}3)=0$ and $(\frac 1p)=1$, and that $S_7(5,1)=S_7(6,2)=0$ but $(\frac{5^2-4\cdot1}7)=(\frac{6^2-4\cdot2}7)=0$ and $(\frac 17)=(\frac 27)=1$.

Conjecture 2. Let $p\equiv 1\pmod4$ be a prime, and let $c,d\in\mathbb Z$.

(i) If $d^{(p-1)/4}\equiv-1\pmod p$ (i.e., $d$ is a quadratic residue and a quartic nonresidue mod $p$), then $S_p(c,d)=0$.

(ii) If $S_p(c,d)=0$ but $d^{(p-1)/4}\not\equiv-1\pmod p$, then $$\left(\frac{c^2-4d}p\right)=\left(\frac dp\right).$$

Remark 2. I have verified Conjecture 2 for all primes $p<500$ with $p\equiv1\pmod4$.

I'll pose more conjectures later.

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.