The first are from an old paper, dealing with the evaluation of elastic Green function in a transversely isotropic medium (Hill 1964).
Hill1 = ((a4 z[1]^2 + a1 z[2]^2 + a5 z[3]^2) (a5 (z[1]^2 + z[2]^2) +
a2 z[3]^2) -
z[2]^2 z[3]^2 a3^2)/((a4 (z[1]^2 + z[2]^2) +
a5 z[3]^2) ((a5 (z[1]^2 + z[2]^2) +
a2 z[3]^2) (a1 (z[1]^2 + z[2]^2) + a5 z[3]^2) -
a3^2 (z[1]^2 + z[2]^2) z[3]^2));
Hill2 = (z[1] z[2]^2 z[3] (a1 - a4) a3 -
z[1] z[3] a3 (a4 z[1]^2 + a1 z[2]^2 +
a5 z[3]^2))/((a4 (z[1]^2 + z[2]^2) +
a5 z[3]^2) ((a5 (z[1]^2 + z[2]^2) +
a2 z[3]^2) (a1 (z[1]^2 + z[2]^2) + a5 z[3]^2) -
a3^2 (z[1]^2 + z[2]^2) z[3]^2));
The following are the corresponding Mathematica expressions resulting from a 3X3 matrix inversion.
mat1 = (a5 (z[1]^2 + z[2]^2) (a4 z[1]^2 +
a1 z[2]^2) + ((a2 a4 + a5^2) z[1]^2 + (a1 a2 - a3^2 + a5^2) z[
2]^2) z[3]^2 +
a2 a5 z[3]^4)/(a1 a4 a5 (z[1]^2 +
z[2]^2)^3 + ((a1 a2 - a3^2) a4 + (a1 + a4) a5^2) (z[1]^2 +
z[2]^2)^2 z[3]^2 +
a5 (-a3^2 + a2 (a1 + a4) + a5^2) (z[1]^2 + z[2]^2) z[3]^4 +
a2 a5^2 z[3]^6);
mat2 = -((a3 z[1] z[3])/(
a1 a5 (z[1]^2 + z[2]^2)^2 + (a1 a2 - a3^2 + a5^2) (z[1]^2 +
z[2]^2) z[3]^2 + a2 a5 z[3]^4));
In[165]:= {mat1 - Hill1, mat2 - Hill2} // Together
Out[165]= {0, 0}
In[170]:= {mat1 == Hill1, mat2 == Hill2} // Simplify
Out[170]= {True, True}
Any ideas of how "pushing" Mathematica to simplify mat1 to Hill1 and mat2 to Hill2?
Thank you very much.
P.S.
Even if it was not needed for the above commands I should add that
z[i], i=1,2,3, satisfy z[1]^2+z[2]^2+z[3]^2=1.