I have a list of vertices of triangles
{{2, 3, 5}, {1, -7, -12}, {12, 4, 10}}, { {2, 3, 6}, {1, -7, -11}, {12, 4, 11}}, { {2, 3, 8}, {1, -7, -9}, {12, 4, 13}}, { {2, 3, 9}, {1, -7, -8}, {12, 4, 14}}, { {2, 4, 3}, {1, -6, -14}, {12, 5, 8}}, { {2, 4, 6}, {1, -6, -11}, {12, 5, 11}}, { {2, 4, 8}, {1, -6, -9}, {12, 5, 13}}, { {2, 4, 9}, {1, -6, -8}, {12, 5, 14}}, { {2, 5, 3}, {1, -5, -14}, {12, 6, 8}}, { {2, 5, 4}, {1, -5, -13}, {12, 6, 9}}, { {2, 5, 8}, {1, -5, -9}, {12, 6, 13}}, { {2, 5, 9}, {1, -5, -8}, {12, 6, 14}}, { {2, 6, 3}, {1, -4, -14}, {12, 7, 8}}, { {2, 6, 4}, {1, -4, -13}, {12, 7, 9}}, { {2, 6, 5}, {1, -4, -12}, {12, 7, 10}}, { {2, 6, 8}, {1, -4, -9}, {12, 7, 13}}, { {2, 6, 9}, {1, -4, -8}, {12, 7, 14}}, { {2, 7, 4}, {1, -3, -13}, {12, 8, 9}}, { {2, 7, 5}, {1, -3, -12}, {12, 8, 10}}, { {2, 7, 6}, {1, -3, -11}, {12, 8, 11}}, { {2, 7, 9}, {1, -3, -8}, {12, 8, 14}}, { {2, 8, 5}, {1, -2, -12}, {12, 9, 10}}, { {2, 8, 6}, {1, -2, -11}, {12, 9, 11}}, { {2, 9, 3}, {1, -1, -14}, {12, 10, 8}}, { {2, 9, 6}, {1, -1, -11}, {12, 10, 11}}, { {2, 9, 8}, {1, -1, -9}, {12, 10, 13}}, { {3, 4, 1}, {2, -6, -16}, {13, 5, 6}}, { {3, 4, 6}, {2, -6, -11}, {13, 5, 11}}, { {3, 4, 7}, {2, -6, -10}, {13, 5, 12}}, { {3, 4, 9}, {2, -6, -8}, {13, 5, 14}}, { {3, 5, 4}, {2, -5, -13}, {13, 6, 9}}, { {3, 5, 7}, {2, -5, -10}, {13, 6, 12}}, { {3, 5, 9}, {2, -5, -8}, {13, 6, 14}}, { {3, 6, 4}, {2, -4, -13}, {13, 7, 9}}, { {3, 6, 5}, {2, -4, -12}, {13, 7, 10}}, { {3, 6, 9}, {2, -4, -8}, {13, 7, 14}}, { {3, 7, 1}, {2, -3, -16}, {13, 8, 6}}, { {3, 7, 4}, {2, -3, -13}, {13, 8, 9}}, { {3, 7, 5}, {2, -3, -12}, {13, 8, 10}}, { {3, 7, 6}, {2, -3, -11}, {13, 8, 11}}, { {3, 7, 9}, {2, -3, -8}, {13, 8, 14}}, { {3, 8, 1}, {2, -2, -16}, {13, 9, 6}}, { {3, 8, 5}, {2, -2, -12}, {13, 9, 10}}, { {3, 8, 6}, {2, -2, -11}, {13, 9, 11}}, { {3, 8, 7}, {2, -2, -10}, {13, 9, 12}}, { {3, 9, 1}, {2, -1, -16}, {13, 10, 6}}, { {3, 9, 6}, {2, -1, -11}, {13, 10, 11}}, { {3, 9, 7}, {2, -1, -10}, {13, 10, 12}}, { {4, 1, 5}, {3, -9, -12}, {14, 2, 10}}, { {4, 1, 6}, {3, -9, -11}, {14, 2, 11}}, { {4, 1, 7}, {3, -9, -10}, {14, 2, 12}}, { {4, 5, 2}, {3, -5, -15}, {14, 6, 7}}, { {4, 5, 7}, {3, -5, -10}, {14, 6, 12}}, { {4, 5, 8}, {3, -5, -9}, {14, 6, 13}}, { {4, 6, 5}, {3, -4, -12}, {14, 7, 10}}, { {4, 6, 8}, {3, -4, -9}, {14, 7, 13}}, { {4, 7, 1}, {3, -3, -16}, {14, 8, 6}}, { {4, 7, 5}, {3, -3, -12}, {14, 8, 10}}, { {4, 7, 6}, {3, -3, -11}, {14, 8, 11}}, { {4, 8, 1}, {3, -2, -16}, {14, 9, 6}}, { {4, 8, 2}, {3, -2, -15}, {14, 9, 7}}, { {4, 8, 5}, {3, -2, -12}, {14, 9, 10}}, { {4, 8, 6}, {3, -2, -11}, {14, 9, 11}}, { {4, 8, 7}, {3, -2, -10}, {14, 9, 12}}, { {4, 9, 1}, {3, -1, -16}, {14, 10, 6}}, { {4, 9, 2}, {3, -1, -15}, {14, 10, 7}}, { {4, 9, 6}, {3, -1, -11}, {14, 10, 11}}, { {4, 9, 7}, {3, -1, -10}, {14, 10, 12}}, { {4, 9, 8}, {3, -1, -9}, {14, 10, 13}}, { {5, 1, 3}, {4, -9, -14}, {15, 2, 8}}, { {5, 1, 6}, {4, -9, -11}, {15, 2, 11}}, { {5, 1, 7}, {4, -9, -10}, {15, 2, 12}}, { {5, 1, 9}, {4, -9, -8}, {15, 2, 14}}, { {5, 2, 1}, {4, -8, -16}, {15, 3, 6}}, { {5, 2, 6}, {4, -8, -11}, {15, 3, 11}}, { {5, 2, 7}, {4, -8, -10}, {15, 3, 12}}, { {5, 2, 8}, {4, -8, -9}, {15, 3, 13}}, { {5, 6, 3}, {4, -4, -14}, {15, 7, 8}}, { {5, 6, 8}, {4, -4, -9}, {15, 7, 13}}, { {5, 6, 9}, {4, -4, -8}, {15, 7, 14}}, { {5, 7, 1}, {4, -3, -16}, {15, 8, 6}}, { {5, 7, 6}, {4, -3, -11}, {15, 8, 11}}, { {5, 7, 9}, {4, -3, -8}, {15, 8, 14}}, { {5, 8, 1}, {4, -2, -16}, {15, 9, 6}}, { {5, 8, 2}, {4, -2, -15}, {15, 9, 7}}, { {5, 8, 6}, {4, -2, -11}, {15, 9, 11}}, { {5, 8, 7}, {4, -2, -10}, {15, 9, 12}}, { {5, 9, 1}, {4, -1, -16}, {15, 10, 6}}, { {5, 9, 2}, {4, -1, -15}, {15, 10, 7}}, { {5, 9, 3}, {4, -1, -14}, {15, 10, 8}}, { {5, 9, 6}, {4, -1, -11}, {15, 10, 11}}, { {5, 9, 7}, {4, -1, -10}, {15, 10, 12}}, { {5, 9, 8}, {4, -1, -9}, {15, 10, 13}}, { {6, 1, 3}, {5, -9, -14}, {16, 2, 8}}, { {6, 1, 4}, {5, -9, -13}, {16, 2, 9}}, { {6, 1, 7}, {5, -9, -10}, {16, 2, 12}}, { {6, 1, 9}, {5, -9, -8}, {16, 2, 14}}, { {6, 2, 4}, {5, -8, -13}, {16, 3, 9}}, { {6, 2, 7}, {5, -8, -10}, {16, 3, 12}}, { {6, 2, 8}, {5, -8, -9}, {16, 3, 13}}, { {6, 3, 2}, {5, -7, -15}, {16, 4, 7}}, { {6, 3, 7}, {5, -7, -10}, {16, 4, 12}}, { {6, 3, 8}, {5, -7, -9}, {16, 4, 13}}, { {6, 3, 9}, {5, -7, -8}, {16, 4, 14}}, { {6, 7, 4}, {5, -3, -13}, {16, 8, 9}}, { {6, 7, 9}, {5, -3, -8}, {16, 8, 14}}, { {6, 8, 2}, {5, -2, -15}, {16, 9, 7}}, { {6, 8, 7}, {5, -2, -10}, {16, 9, 12}}, { {6, 9, 2}, {5, -1, -15}, {16, 10, 7}}, { {6, 9, 3}, {5, -1, -14}, {16, 10, 8}}, { {6, 9, 7}, {5, -1, -10}, {16, 10, 12}}, { {6, 9, 8}, {5, -1, -9}, {16, 10, 13}}, { {7, 1, 3}, {6, -9, -14}, {17, 2, 8}}, { {7, 1, 4}, {6, -9, -13}, {17, 2, 9}}, { {7, 1, 5}, {6, -9, -12}, {17, 2, 10}}, { {7, 1, 9}, {6, -9, -8}, {17, 2, 14}}, { {7, 2, 4}, {6, -8, -13}, {17, 3, 9}}, { {7, 2, 5}, {6, -8, -12}, {17, 3, 10}}, { {7, 2, 8}, {6, -8, -9}, {17, 3, 13}}, { {7, 3, 5}, {6, -7, -12}, {17, 4, 10}}, { {7, 3, 8}, {6, -7, -9}, {17, 4, 13}}, { {7, 3, 9}, {6, -7, -8}, {17, 4, 14}}, { {7, 4, 3}, {6, -6, -14}, {17, 5, 8}}, { {7, 4, 8}, {6, -6, -9}, {17, 5, 13}}, { {7, 4, 9}, {6, -6, -8}, {17, 5, 14}}, { {7, 8, 5}, {6, -2, -12}, {17, 9, 10}}, { {7, 9, 3}, {6, -1, -14}, {17, 10, 8}}, { {7, 9, 8}, {6, -1, -9}, {17, 10, 13}}, { {8, 1, 4}, {7, -9, -13}, {18, 2, 9}}, { {8, 1, 5}, {7, -9, -12}, {18, 2, 10}}, { {8, 1, 6}, {7, -9, -11}, {18, 2, 11}}, { {8, 1, 9}, {7, -9, -8}, {18, 2, 14}}, { {8, 2, 1}, {7, -8, -16}, {18, 3, 6}}, { {8, 2, 4}, {7, -8, -13}, {18, 3, 9}}, { {8, 2, 5}, {7, -8, -12}, {18, 3, 10}}, { {8, 2, 6}, {7, -8, -11}, {18, 3, 11}}, { {8, 3, 1}, {7, -7, -16}, {18, 4, 6}}, { {8, 3, 5}, {7, -7, -12}, {18, 4, 10}}, { {8, 3, 6}, {7, -7, -11}, {18, 4, 11}}, { {8, 3, 9}, {7, -7, -8}, {18, 4, 14}}, { {8, 4, 1}, {7, -6, -16}, {18, 5, 6}}, { {8, 4, 6}, {7, -6, -11}, {18, 5, 11}}, { {8, 4, 9}, {7, -6, -8}, {18, 5, 14}}, { {8, 5, 4}, {7, -5, -13}, {18, 6, 9}}, { {8, 5, 9}, {7, -5, -8}, {18, 6, 14}}, { {8, 9, 1}, {7, -1, -16}, {18, 10, 6}}, { {8, 9, 6}, {7, -1, -11}, {18, 10, 11}}, { {9, 1, 5}, {8, -9, -12}, {19, 2, 10}}, { {9, 1, 6}, {8, -9, -11}, {19, 2, 11}}, { {9, 1, 7}, {8, -9, -10}, {19, 2, 12}}, { {9, 2, 1}, {8, -8, -16}, {19, 3, 6}}, { {9, 2, 5}, {8, -8, -12}, {19, 3, 10}}, { {9, 2, 6}, {8, -8, -11}, {19, 3, 11}}, { {9, 2, 7}, {8, -8, -10}, {19, 3, 12}}, { {9, 3, 1}, {8, -7, -16}, {19, 4, 6}}, { {9, 3, 2}, {8, -7, -15}, {19, 4, 7}}, { {9, 3, 5}, {8, -7, -12}, {19, 4, 10}}, { {9, 3, 6}, {8, -7, -11}, {19, 4, 11}}, { {9, 3, 7}, {8, -7, -10}, {19, 4, 12}}, { {9, 4, 1}, {8, -6, -16}, {19, 5, 6}}, { {9, 4, 2}, {8, -6, -15}, {19, 5, 7}}, { {9, 4, 6}, {8, -6, -11}, {19, 5, 11}}, { {9, 4, 7}, {8, -6, -10}, {19, 5, 12}}, { {9, 5, 2}, {8, -5, -15}, {19, 6, 7}}, { {9, 5, 7}, {8, -5, -10}, {19, 6, 12}}, { {9, 6, 5}, {8, -4, -12}, {19, 7, 10}}
Now I want to find coordinates of centroid, orthocenter and center of out circle the list of triangles. With each triangle, e.g with center of out circle, I tried
a = {1, 3, 4};
b = {20, 14, 2};
c = {9, 10, -3};
t = {x, y, z};
u = b - a;
v = c - a;
n = Cross[u, v];
k = t - a;
w = k.n;
Reduce[{SquaredEuclideanDistance[a, t] ==
SquaredEuclideanDistance[b, t],
SquaredEuclideanDistance[a, t] == SquaredEuclideanDistance[c, t],
w == 0}, {x, y, z}, Reals]
and with orthocenter, I tried
a = {1, 3, 4};
b = {20, 14, 2};
c = {9, 10, -3};
h = {x1, y1, z1};
u = b - a;
v = c - a;
k = h - a;
n = Cross[u, v];
w = k.n;
Reduce[{(h - a). (c - b) == 0, (h - b).(c - a) == 0, w == 0}, {x1, y1, z1}, Reals]
And with centroid, I tried, (a + b + c)/3.
I want to out put has the form {{1, 3, 4}, {20, 14, 2}, {9, 10, -3}, {coordinates of centroid},{coordinates of orthocenter},{coordinates of center of out circle} }
I saw http://www.mapleprimes.com/questions/203101-How-Can-I-Make-A-Triangle-With-Integer and wrote a program in Maple. I got all results [![enter image description here][1]][1]

