5
$\begingroup$

I am trying to find a closed form for the following sum: $$ \sum_{k=0}^{n-1} \left( \frac{1}{(k+1)(n-k)} \cdot \binom{n+1}{k+1}^2 \right) $$

What I have tried so far

I tried to simplify the expression by shifting the index. Let $j = k+1$. The limits change from $0 \dots n-1$ to $1 \dots n$. The term $(n-k)$ becomes $(n-(j-1)) = (n-j+1)$.

The sum becomes: $$ S = \sum_{j=1}^{n} \frac{1}{j(n-j+1)} \binom{n+1}{j}^2 $$

I noticed that I can use partial fraction decomposition on the fraction: $$ \frac{1}{j(n-j+1)} = \frac{1}{n+1} \left( \frac{1}{j} + \frac{1}{n-j+1} \right) $$

Substituting this back into the sum: $$ S = \frac{1}{n+1} \sum_{j=1}^{n} \left( \frac{1}{j} + \frac{1}{n-j+1} \right) \binom{n+1}{j}^2 $$

Due to the symmetry of binomial coefficients where $\binom{n}{k} = \binom{n}{n-k}$, the two terms in the sum are actually identical. This simplifies the expression to:

$$ S = \frac{2}{n+1} \sum_{j=1}^{n} \frac{1}{j} \binom{n+1}{j}^2 $$

I am stuck at this point. Is there a known identity for $\sum \frac{1}{j} \binom{n}{j}^2$, or is there a better way to approach this?

Any help or hints would be appreciated.

$\endgroup$
4
  • 2
    $\begingroup$ What led you to consider this sum? The values of the sum are not integers, so I'm not sure if it's related to combinatorics. $\endgroup$ Commented Nov 21 at 12:42
  • $\begingroup$ WolframAlpha leads me to believe there's no nice closed form $\endgroup$ Commented Nov 21 at 12:47
  • 1
    $\begingroup$ There's no closed form $\endgroup$ Commented Nov 21 at 14:07
  • $\begingroup$ @SangchulLee (n+1)^2 times this sum appears after simplifying the following sum which appeared in a problem: $n \in \mathbb{N}, n \geq 2 \text{ şi } x = \sum_{k=0}^{n-1} \frac{\left(C_{n+1}^{k+1}\right)^4}{C_n^k C_n^{k+1}}$ $\endgroup$ Commented Nov 21 at 20:38

2 Answers 2

2
$\begingroup$

Here I show how to evaluate $\sum_{j=1}^{n-1}\frac{1}{j+1} \binom{n}{j}^2$ (this is almost what you need $\sum_{j=1}^{n-1}\frac{1}{j} \binom{n}{j}^2$ and I guess these two sums are related in some way and one of them can be expressed in terms of another).

Lemma (as far as I know this is a classic fact and it is called Egorychev identity for binomials): $$\binom{n}{k}=\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{k+1}}dz$$

Proof: $$\frac{1}{2 \pi i} \int_{|z|=\epsilon} \frac{(1+z)^n}{z^{k+1}}dz = res_{z=0} \frac{(1+z)^n}{z^{k+1}}=\frac{1}{k!} \frac{d^{k}}{dz^{k}}\Bigg| _{z=0} \Big( (1+z)^n\Big)=\frac{1}{k!} n(n-1)(n-2)...(n-k+1)(1+z)^{n-k} \Bigg| _{z=0}=\frac{n(n-1)(n-2)...(n-k+1)}{k!}=\binom{n}{k}$$

Now we apply Lemma in the following way:$$\sum_{j=1}^{n-1}\frac{1}{j+1} \binom{n}{j}^2=\sum_{j=1}^{n-1}\frac{1}{j+1} \frac{n! (n+1)}{j!(n-j)! (n+1)} \binom{n}{j}=\frac{1}{n+1} \sum_{j=1}^{n-1}\frac{(n+1)!}{(j+1)!(n-j)!} \binom{n}{j}=\frac{1}{n+1} \sum_{j=1}^{n-1}\binom{n+1}{j+1} \binom{n}{j}=\frac{1}{2\pi i(n+1)} \sum_{j=1}^{n-1} \int_{|z|=\epsilon} \frac{(1+z)^{n+1}}{z^{j+2}}dz \binom{n}{j}=\frac{1}{2\pi i(n+1)}\int_{|z|=\epsilon}\frac{(1+z)^{n+1}}{z^2} \sum_{j=1}^{n-1} \bigg(\frac{1}{z} \bigg)^j \binom{n}{j}dz=\frac{1}{2\pi i(n+1)}\int_{|z|=\epsilon} \frac{(1+z)^{n+1}}{z^2} \bigg( \Big(1+\frac{1}{z}\Big)^n -1-\frac{1}{z^n}\bigg)dz=\frac{1}{2\pi i(n+1)}\int_{|z|=\epsilon} \bigg[ \frac{\big(z+1 \big)^{2n+1}}{z^{n+2}} -\frac{(z+1)^{n+1}}{z^2}-\frac{(z+1)^{n+1}}{z^{n+2}}\bigg]dz=\frac{1}{n+1} \bigg[ \binom{2n+1}{n+1} -\binom{n+1}{1} -\binom{n+1}{n+1} \bigg]=\frac{1}{n+1} \bigg[\binom{2n+1}{n+1}-n-2 \bigg]$$

Thus $$\sum_{j=1}^{n-1}\frac{1}{j+1} \binom{n}{j}^2=\frac{1}{n+1} \bigg(\binom{2n+1}{n+1}-n-2 \bigg)$$

$\endgroup$
4
  • 2
    $\begingroup$ This doesn't really relate to OPs sum if i am not wrong. But the one you are solving can be done simply using Vandermode Convolution. $\endgroup$ Commented Nov 21 at 14:14
  • $\begingroup$ @匚ㄖㄥᗪ乇ᗪ how it can be done via Vandermonde Convolution? It looks like Vandermonde Convolution gives a closed form for $\sum_{j=0}^{n+1}\binom{n}{j} \binom{n+1}{j}=\sum_{j=0}^{n+1}\binom{n}{j} \binom{n+1}{j+1} \frac{j+1}{n+1-j}$, but not for $\sum_{j=0}^{n+1}\binom{n}{j} \binom{n +1}{j+1}$ $\endgroup$ Commented Nov 21 at 14:26
  • $\begingroup$ \begin{aligned} \sum_{j=1}^{n} \frac{\binom{n}{j}^2}{j+1} &= \sum_{j=1}^{n} \binom{n}{j} \frac{1}{n+1} \binom{n+1}{j+1} \\ &= \frac{1}{n+1} \sum_{j=1}^{n} \binom{n}{n-j} \binom{n+1}{j+1} \\ &= \frac{1}{n+1} \left[ \binom{2n+1}{n+1} - \binom{n}{n}\binom{n+1}{1} \right] \\ &= \frac{\binom{2n+1}{n+1}}{n+1} - 1 \end{aligned} $\endgroup$ Commented Nov 21 at 18:56
  • $\begingroup$ @匚ㄖㄥᗪ乇ᗪ how exactly did you get $\sum_{j=1}^{n} \binom{n}{n-j} \binom{n+1}{j+1} = \binom{2n+1}{n+1}-\binom{n}{n} \binom{n+1}{1}$? Vandermonde Convolution states that $\sum_{j=0}^{r} \binom{m}{j} \binom{l}{r-j}=\binom{m+l}{r}$; if you take $r=n+1$ and $m+l=2n+1$ to get $\binom{2n+1}{n+1}$ then it equals to $\sum_{j=0}^{n+1}\binom{m}{j} \binom{l}{n+1-j}$, then $m$ must be $n$ and hence $l$ must be $n+1$, we obtain $\sum_{j=0}^{n+1}\binom{n}{j} \binom{n+1}{n+1-j}=\sum_{j=0}^{n+1}\binom{n}{n-j} \binom{n+1}{j}$. This is $j$ instead of $j+1$ in the second binomial. What do you mean?.. $\endgroup$ Commented Nov 21 at 19:29
2
$\begingroup$

$$S_n=\sum_{k=0}^{n-1} \frac{1}{(k+1)(n-k)} \, \binom{n+1}{k+1}^2= \frac{2}{n+1} \sum_{j=1}^{n} \frac{1}{j}\, \binom{n+1}{j}^2 $$ Using the gamma function $$S_n=2(n+1)\Big(\Gamma(n+1) \Big)^2\,\sum_{j=1}^{n}\frac 1 {j^3\,\Big(\Gamma(j)\,\Gamma(n+2-j)\Big)^2}$$

Using generalized hypergeometric functions $$S_n=2 (n+1) \, _4F_3(1,1,-n,-n;2,2,2;1)-\frac{2}{(n+1)^2}$$

$\endgroup$
1
  • $\begingroup$ @DS. Thank you for pointing it $\endgroup$ Commented Nov 24 at 3:37

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.