0
$\begingroup$

Let $x$ be a real number. Consider the following expression:

$$ \sqrt[3]{\frac{x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}} + \sqrt[3]{\frac{x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}} $$

It includes an arithmetic square root, so it's defined only if the expression under that root is non-negative, namely:

$$ x^{2} - 4 \geq 0 \Longleftrightarrow x^{2} \geq 4 \Longleftrightarrow |x| \geq 2 \Longleftrightarrow \left[ \begin{array}[l]\ x \geq 2, \\ x \leq -2. \end{array} \right. $$

We will now simplify it. Here is the approach I came up with.

Define the following:

\begin{align} A &:= \sqrt[3]{\frac{x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}}, \\ B &:= \sqrt[3]{\frac{x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}}, \\ u &:= A + B. \end{align}

After cubing both sides of the last expression, we get:

\begin{align} u^{3} &= \left(A + B\right)^{3}, \\ u^{3} &= A^{3} + B^{3} + 3AB\left(A + B\right), \\ u^{3} &= A^{3} + B^{3} + 3ABu. \end{align}

Now, let's find out the value of $A^{3} + B^{3}$:

\begin{align}\require{cancel} A^{3} + B^{3} &= \left(\sqrt[3]{\frac{x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}}\right)^{3} + \left(\sqrt[3]{\frac{x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}}\right)^{3} \\ &= \frac{x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2} + \frac{x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2} \\ &= \frac{1}{2}\left(x^{3} - 3x \cancel{+ \left(x^{2} - 1\right)\sqrt{x^{2} - 4}} + x^{3} - 3x \cancel{- \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}\right) \\ &= \frac{1}{2}\left((x^{3} - 3x) + (x^{3} - 3x)\right) \\ &= \frac{1}{2}\cdot 2(x^{3} - 3x) \\ &= x^{3} - 3x \end{align}

Before working with $AB$, note the following:

\begin{align} \left(x^{2} - 1\right)\sqrt{x^{2} - 4} &= \sqrt{\left(x^{2} - 1\right)^{2}\left(x^{2} - 4\right)} \\ &= \sqrt{\left(x^{4} - 2x^{2} + 1\right)\left(x^{2} - 4\right)} \\ &= \sqrt{x^{6} - 6x^{4} + 9x^{2} - 4} \\ &= \sqrt{\left(x^{3}\right)^{2} - 2x^{3}\cdot 3x + \left(3x\right)^{2} - 4} \\ &= \sqrt{\left(x^{3} - 3x\right)^{2} - 4} \end{align}

Now, let's find out the value of $AB$:

\begin{align}\require{cancel} AB &= \sqrt[3]{\frac{x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}} \cdot \sqrt[3]{\frac{x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}}{2}} \\ &= \sqrt[3]{\frac{1}{2}\left(x^{3} - 3x + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}\right)\cdot \frac{1}{2}\left(x^{3} - 3x - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}\right)} \\ &= \sqrt[3]{\frac{1}{4}\left((x^{3} - 3x) + \left(x^{2} - 1\right)\sqrt{x^{2} - 4}\right)\left((x^{3} - 3x) - \left(x^{2} - 1\right)\sqrt{x^{2} - 4}\right)} \\ &= \sqrt[3]{\frac{1}{4}\left((x^{3} - 3x)^2 - \left(x^{2} - 1\right)^2\left(x^{2} - 4\right)\right)} \\ &= \sqrt[3]{\frac{1}{4}\left((x^{3} - 3x)^2 - \left(\left(x^{3} - 3x\right)^{2} - 4\right)\right)} \\ &= \sqrt[3]{\frac{1}{4}\left(\cancel{(x^{3} - 3x)^2} \cancel{- \left(x^{3} - 3x\right)^{2}} + 4\right)} \\ &= 1 \end{align}

By substituting $A^{3}+B^{3}$ and $AB$ with their values, we have:

\begin{align} u^{3} &= A^{3} + B^{3} + 3ABu, \\ u^{3} &= x^{3} - 3x + 3u, \\ u^{3} - 3u &= x^{3} - 3x. \end{align}

Further on, we are going to use a couple of known facts:

  • A cubic $ax^{3} + bx^{2} + cx + d$ with $a, b, c, d \in \mathbb{R}$ has two local extrema if and only if $b^{2} > 3ac$, and is monotonic otherwise.
  • If a cubic has two local extrema, then the local maximum $x_{\max}$ can be found by the formula $x_{\max} = \frac{-b - \sqrt{b^{2} - 3ac}}{3a}$, and the local minimum $x_{\min}$ can be found by the formula $x_{\min} = \frac{-b + \sqrt{b^{2} - 3ac}}{3a}$.

In our case $b = 0$, and this simplifies our reasoning, as:

  • For checking for the local extrema, it's enough to check whether $-3ac > 0$.
  • The local maximum is found by $x_{\max} = - \frac{\sqrt{-3ac}}{3a}$, and the local minimum is found by $x_{\min} = \frac{\sqrt{-3ac}}{3a}$.

Consider the function $f(x) = x^{3} - 3x$. As $(-3)\cdot 1\cdot (-3) = 9 > 0$, it has two local extrema at:

$$ x_{\max} = -\frac{\sqrt{9}}{3} = -1,\ \ \ \ \ \ \ \ \ \ \ x_{\min} = \frac{\sqrt{9}}{3} = 1. $$

Therefore, $f(x)$ is decreasing on $(-1; 1)$ and increasing elsewhere. The expression in question is defined on $(-\infty; -2]\cup [2;+\infty)$. There, $f(x)$ is increasing. Thus, $u^{3} - 3u = x^{3} - 3x \Leftrightarrow u = x$ on that interval, so the answer is $x$.


Now, on to the question.

I'm sure there is a simpler approach to the same simplification.

I thought about completing the cube inside each cube root in order to cancel both roots with exponents and simplify what's left.

However, I can't seem to deduce a procedure to do this in such expressions. Is it possible, and if yes, then what's the general approach?

$\endgroup$
4
  • $\begingroup$ The function is also defined in the real domain if $x=1+\epsilon$ $\endgroup$ Commented Nov 14 at 7:27
  • 1
    $\begingroup$ With hindsight, one sees that $(x+\sqrt{x^2-4})^3=4(x^3-3x+(x^2-1)\sqrt{x^2-4})$. $\endgroup$ Commented Nov 14 at 9:00
  • $\begingroup$ I doubt if there is any general procedure. Essentially, you will end up finding $u$ by solving a cubic - in this case, $u^3-3u-(x^3-3x)=0$, which is easy. In general, however, you will need one of the methods for solving a not-nice cubic: the algebraic ones lead to solutions in the form of the sum of two cube roots, which takes you back to where you started; my solution below uses another method, but it only works to give anything other than $\cosh(\frac{1}{3}\cosh^{-1}(...))$ because there is a neat answer. $\endgroup$ Commented Nov 14 at 10:40
  • $\begingroup$ If you want to simplify the last part of your argument, you could use the fact that $0 = u^3-3u-(x^3-3x)=(u-x)(u^2+ux +x^2 -3)=(u-x)\big((u+\frac{1}{2}x)^2+\frac{3}{4}(x^2-4)\big)$, which, for $x^2>4$, only has one real root (and $u$ is definitely real). $\endgroup$ Commented Nov 14 at 12:13

1 Answer 1

4
$\begingroup$

For $x>0$, let $x=2\cosh \theta$ (which is always possible since $x\ge 2$). Then, using the triple angle identities for the hyperbolic functions, the content of the first cube root is $e^{3\theta}$ and of the second, $e^{-3\theta}$. Thus the sum of the cube roots is $2\cosh \theta=x$. The same argument works for $x<0$, with $x=-2\cosh \theta$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.