Claim: If $x_1 < x_2< x_3< x_4< x_5 < x_6$ are real numbers, $c >0$, $|P(x_i)|=c$ for $i\in \{1,2,\dots,6\}$, where $P$ is a real cubic polynomial, then the unique possible configurations of the sign of $P(x_i)$ are
\begin{array}{c|cccccc}
x & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline
\operatorname{sign} P(x) & + & - & - & + & + & - \\
P(x) & c & -c & -c & c & c & -c
\end{array}
\begin{array}{c|cccccc}
x & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline
\operatorname{sign} P(x) & - & + & + & - & - & + \\
P(x) & -c & c & c & -c & -c & c
\end{array}
The proof of the claim is the hard part. We provide in the end two proofs of this claim, one following an idea by JohnBollinger (given in a comment) and my original proof.
The claim implies that either $P(1)=P(5)=P(6)=12$ or $P(1)=P(5)=P(6)=-12$.
Note that the cubic polynomials that satisfies $P(1)=P(5)=P(6)=12$ are
$$P(x)= k(x-1)(x-5)(x-6)+12, \ k\neq 0.$$
Since we need $P(2)=P(3)=P(7)=-12$ we conclude that
$$-12= k(2-1)(2-5)(2-6)+12 = 12k+12.$$
$$-12= k(3-1)(3-5)(3-6)+12 = 12k+12.$$
$$-12= k(7-1)(7-5)(7-6)+12 = 12k+12.$$
so there is a unique solution $k = -2$. So
$$P(x)= -2(x-1)(x-5)(x-6)+12,$$
and the other solution for the case $P(1)=P(5)=P(6)=-12$ is $-P$.
in particular $P(0)= \pm 72$ and $P(0)/9= \pm 8$.
First Proof of the Claim (following JohnBollinger)
Here we follow the idea given by JohnBollinger in the comments. My original proof is in the end.
Let $S=\{x_1,x_2,x_3,x_4,x_5,x_6\}.$ We have that $P(x)=c$ has at most $3$ solutions and
$P(x)=-c$ has at most 3 solutions. Since we need $|P(x)|=c$ for $x\in S$ and there are six elements in $S$ the only option is to have exactly $3$ solutions for each equation in $S$.
Let $a_1< a_2 < a_3$ and $b_1< b_2 < b_3$, with $S=\{a_1,a_2,a_3,b_1,b_2,b_3\}$, such that $P(a_i)=c$ and $P(b_i)=-c$.
By Rolle's Theorem, there are two distinct critical points $d_1\in (a_1,a_2)$ and $d_2\in (a_2,a_3)$. In particular $d_1< d_2$. For the same reason there are two critical points $\hat{d}_1\in (b_1,b_2)$ and $\hat{d}_2\in (b_2,b_3)$, with $\hat{d}_1< \hat{d}_2$.
Since $P'$ is a quadratic polynomial, we conclude that
-$P$ has exactly two critical points, and in particular $\hat{d}_1=d_1$ and $\hat{d}_2=d_2$,
-$P$ is strictly monotone on each one of the intervals $I_1=(-\infty,d_1)$, $I_2=(d_1,d_2)$ and $I_3=(d_2,+\infty)$, and the signal of the derivative changes when one cross a critical point.
-$a_1,b_1\in I_1$, $a_2,b_2\in I_2$ and $a_3,b_3\in I_3$.
There are two cases
Case I. We have
\begin{array}{c|ccc}
interval & I_1 & I_2 & I_3 \\ \hline
P' \ is & positive & negative & positive \\ \hline
P \ is \ monotone & increasing & decreasing & increasing
\end{array}
Since $P(a_i) > P(b_i)$ we conclude that
$$b_1 < a_1< a_2 < b_2< b_3 < a_3,$$
so
\begin{array}{c|cccccc}
x & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline
\operatorname{sign} P(x) & - & + & + & - & - & + \\
P(x) & -c & c & c & -c & -c & c
\end{array}
Case II. We have
\begin{array}{c|ccc}
interval & I_1 & I_2 & I_3 \\ \hline
P' \ is & negative & positive & negative \\ \hline
P \ is \ monotone & decreasing & increasing & decreasing
\end{array}
Since $P(a_i) > P(b_i)$ we conclude that
$$a_1 < b_1< b_2 < a_2< a_3 < b_3,$$
so
\begin{array}{c|cccccc}
x & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline
\operatorname{sign} P(x) & + & - & - & + & + & - \\
P(x) & c & -c & -c & c & c & -c
\end{array}
Second proof of the Claim (original proof)
I will write down the proof of the claim for our case $x_1=1, x_2=2, x_3=3,x_4=5, x_5=6, x_6=7$, and $c=12$. The generalization is rather obvious.
As already observed $P(x)=12$ has at most $3$ solutions and
$P(x)=-12$ has at most 3 solutions. Since we need $|P(x)|=12$ for $x\in S=\{1,2,3,5,6,7\}$ the only option is to have exactly $3$ solutions for each equation in $S$.
Note that all points in $S$ are simple roots of $P(x)\pm 12$, that is, $P'(x)\neq 0$ for $x\in S$.
We now look for the possible signs of $P$ at $S$: there are $20$ configurations of $3$ signs $+$ and $3$ signs $-$ in the $6$ positions of $S$, but we are going to see that only $2$ are possible for a cubic polynomial.
Crucial observations are that
-the patterns $++$, $--$ imply, by Rolle's Theorem, the existence of a critical point of $P$ in the corresponding interval.
-the patterns $+-$, $-+$ imply, by the Intermediary Value Theorem, the existence of a root of $P$ in the corresponding interval.
-As a consequence the patterns $+-+$, $-+-$ imply the existence of two roots in corresponding interval. By Rolle's Theorem there is also a critical point in the corresponding interval.
Case I. If the signs are
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & + & + & - & - & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & - & - & + & + & +
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & + & + & +& - & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & - & - & -& + & +
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & - & + & +& + & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) &+ & + & - & -& - & +
\end{array}
$P$ would have at least $3$ critical points. Impossible.
Case II. If the signs are
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & - & + & - & + & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & + & - & + & - & +
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & + & + & - & + & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & - & - & + & - & +
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & + & - & + & + & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & - & + & - & - & +
\end{array}
then $P$ would have at least $4$ roots. That is not possible.
Case III. If the signs are
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & + & - & + & - & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & - & + & - & + & +
\end{array}
then $P$ would have 3 critical points. One in each interval $(1,2)$ and $(6,7)$ and, since $P$ would have roots in $(3,5)$ and $(5,6)$, we would have a critical point in $(3,6)$. Impossible.
Case IV. If the signs are (thanks to tkf for fixing the first two configurations)
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & + & - & - & + & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & - & + & + & - & +
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & + & - & + & + & - & -
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\text{sign}(P(x)) & - & + & - & - & + & +
\end{array}
$P$ would have at $3$ critical points, using an argument similar to case $III$. Impossible.
Case V. So the remaining cases are
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\operatorname{sign} P(x) & + & - & - & + & + & - \\
P(x) & 12 & -12 & -12 & 12 & 12 & -12
\end{array}
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 5 & 6 & 7 \\ \hline
\operatorname{sign} P(x) & - & + & + & - & - & + \\
P(x) & -12 & 12 & 12 & -12 & -12 & 12
\end{array}
This completes the proof of the claim in our case.