Consider the following sequence of even polynomials $f_k:[0,1]\to\mathbb R$ , $$ \begin{cases} \,f_k(x)\,= \frac{(1-x^2)^2}{2}\,f_{k-1}''(x) \quad \textrm{for } k\geq 2\\ f_1(x)=x^2 \end{cases}$$
I am interested in the values $\phi_k:=f_{k}(0)=\frac{1}{2}f_{k-1}''(0)\,$. The first ones are $\phi_{1}=0$, $\phi_{2}=1$, $\phi_3=-2$, $\phi_4=10$, $\dots$
I would like to show that $\phi_k$ is $\geq0$ for $k$ even and $\leq0$ for $k$ odd. Moreover I would like to show $$\frac{|\phi_{2k}|}{(2k)!} \,\geq\, \max\Big(\frac{|\phi_{2k-1}|}{(2k-1)!},\,\frac{|\phi_{2k+1}|}{(2k+1)!}\Big) .$$
Any possible strategy?