This is not a full answer but a long comment containing some experimental evidence for further analysis.
If I interpret the question correctly, the distance is measured clockwise, so everything is equivalent to considering the sequence of numbers $(1,2,\ldots,2n-1,2n)$ instead of a circle. Also, in the following, I will use distances computed as the plain difference between the two points in the couple, therefore leading to differences $1,2,\ldots,n$ rather than $0,1,\ldots,n-1$.
The problem can be modeled as a linear programming problem with binary variables, with variables $x_{i,j}, 1 \le i \lt j \le 2n$. $x_{i,j} = 1$ when the couple $(i,j)$ is chosen for the distance $j-i$, $x_{i,j} = 0$ otherwise.
The problem is then e.g. minimize $x_{2n-1,2n}$ subject to:
$$\sum_{k = i \space \lor \space k = j} x_{i,j} = 1, k=1,\ldots,2n$$
$$\sum_{k = j-i} x_{i,j} \ge 1, k=1,\ldots,n$$
I chose just a random objective function and also the second constraint could be replaced with an equality.
For example for $n=4$ we have:
Minimize
obj: x7,8
Subject To
x1,2 + x1,3 + x1,4 + x1,5 + x1,6 + x1,7 + x1,8 = 1
x1,2 + x2,3 + x2,4 + x2,5 + x2,6 + x2,7 + x2,8 = 1
x1,3 + x2,3 + x3,4 + x3,5 + x3,6 + x3,7 + x3,8 = 1
x1,4 + x2,4 + x3,4 + x4,5 + x4,6 + x4,7 + x4,8 = 1
x1,5 + x2,5 + x3,5 + x4,5 + x5,6 + x5,7 + x5,8 = 1
x1,6 + x2,6 + x3,6 + x4,6 + x5,6 + x6,7 + x6,8 = 1
x1,7 + x2,7 + x3,7 + x4,7 + x5,7 + x6,7 + x7,8 = 1
x1,8 + x2,8 + x3,8 + x4,8 + x5,8 + x6,8 + x7,8 = 1
x1,2 + x2,3 + x3,4 + x4,5 + x5,6 + x6,7 + x7,8 >= 1
x1,3 + x2,4 + x3,5 + x4,6 + x5,7 + x6,8 >= 1
x1,4 + x2,5 + x3,6 + x4,7 + x5,8 >= 1
x1,5 + x2,6 + x3,7 + x4,8 >= 1
Binary
x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x3,4 x3,5 x3,6 x3,7 x3,8 x4,5 x4,6 x4,7 x4,8 x5,6 x5,7 x5,8 x6,7 x6,8 x7,8
End
You can submit the problem for free as an LP file at the NEOS server (check "Return .sol file" and add an email address).
I have tried all $1 \le n \le 18$. Here are some solutions:
$$n = 5: (1,5), (2,7), (3,4), (6,9), (8,10)$$
$$n = 8: (1,6), (2,8), (3,7), (4,11), (5,13), (9,10), (12,15), (14,16)$$
$$n = 9: (1,7), (2,9), (3,11), (4,8), (5,10), (6,15), (12,13), (14,17), (16,18)$$
It seems from the results that the problem has a solution if and only if:
$$n \equiv 0,1 \mod 4$$
But now we need a proof of that...