For the fun of it, I tried series expansion of the integrand. We obtain things like
$$\cos (x)\frac{ \log (\sin (x))}{\log (\tan (x))}=1-\frac{ (t+1)}{2 t}x^2+\frac{ (t+2)^2}{24 t^2}x^4-\frac{ \left(t^3+t^2+12t+40\right)}{720 t^3}x^6+\frac{\left(9 t^4+576 t^3-568 t^2-2688 t+6720\right)}{362880 t^4}x^8+\cdots$$ where $t=\log(x)$. So, the general form is
$$\cos (x)\frac{ \log (\sin (x))}{\log (\tan (x))}=\sum_{n=0}^\infty \frac{P_n(t)}{t^n} x^{2n}$$
This means that we face a bunch of integrals
$$I_{m,n}=\int\frac {x^m}{\log^n(x)}\,dx=-\frac{E_n(-(m+1) \log (x)) } {\log^{n-1}(x)}$$
Limited to the truncated expansion given at the beginning, for a limited range, the results do not look too bad for the integral between $0$ and $k$
$$\left(
\begin{array}{ccc}
k & \text{approximation} & \text{exact} \\
0.05 & 0.049986 & 0.049986 \\
0.10 & 0.099897 & 0.099897 \\
0.15 & 0.149694 & 0.149694 \\
0.20 & 0.199369 & 0.199369 \\
0.25 & 0.248956 & 0.248956 \\
0.30 & 0.298540 & 0.298540 \\
0.35 & 0.348275 & 0.348275 \\
0.40 & 0.398411 & 0.398411 \\
0.45 & 0.449341 & 0.449341 \\
0.50 & 0.501690 & 0.501692 \\
0.55 & 0.556477 & 0.556491 \\
0.60 & 0.615470 & 0.615546 \\
0.65 & 0.682009 & 0.682434 \\
0.70 & 0.763211 & 0.765857 \\
0.75 & 0.876866 & 0.899287
\end{array}
\right)$$