You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Used CDC dataset for heart attack detection in patients. Balanced the dataset using SMOTE and Borderline SMOTE and used feature selection and machine learning to create different models and compared them based on metrics such as F-1 score, ROC AUC, MCC, and accuracy.
demonstrate different models such as Variational Autoencoders and GANs in a variety of datasets, including tabular, text and image data, including the generation of synthetic data for comparison of their effectiveness in all models for each kind of dataset
Deep Learning models aimed at improving performance on imbalanced time-series clinical data. The project explores data augmentation techniques and model optimization to enhance classification results in challenging imbalanced datasets.