Skip to content

Update timm universal (support transformer-style model) #1004

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Dec 19, 2024
Prev Previous commit
Next Next commit
Update encoders_timm.rst
  • Loading branch information
brianhou0208 committed Dec 18, 2024
commit 51a4d7bab379c02717e0da16a8a5ba553e349039
98 changes: 69 additions & 29 deletions docs/encoders_timm.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ however, not all models are supported

Below is a table of suitable encoders (for DeepLabV3, DeepLabV3+, and PAN dilation support is needed also)

Total number of encoders: 792 (579+213)
Total number of encoders: 812 (593+219)

.. note::

Expand Down Expand Up @@ -99,6 +99,8 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| cs3sedarknet_xdw | ✅ |
+----------------------------------+------------------+
| cspdarknet53 | ✅ |
+----------------------------------+------------------+
| cspresnet50 | ✅ |
+----------------------------------+------------------+
| cspresnet50d | ✅ |
Expand All @@ -107,6 +109,14 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| cspresnext50 | ✅ |
+----------------------------------+------------------+
| darknet17 | ✅ |
+----------------------------------+------------------+
| darknet21 | ✅ |
+----------------------------------+------------------+
| darknet53 | ✅ |
+----------------------------------+------------------+
| darknetaa53 | ✅ |
+----------------------------------+------------------+
| densenet121 | |
+----------------------------------+------------------+
| densenet161 | |
Expand Down Expand Up @@ -189,14 +199,6 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| eca_vovnet39b | |
+----------------------------------+------------------+
| ecaresnet101d | ✅ |
+----------------------------------+------------------+
| ecaresnet101d_pruned | ✅ |
+----------------------------------+------------------+
| ecaresnet200d | ✅ |
+----------------------------------+------------------+
| ecaresnet269d | ✅ |
+----------------------------------+------------------+
| ecaresnet26t | ✅ |
+----------------------------------+------------------+
| ecaresnet50d | ✅ |
Expand All @@ -205,6 +207,14 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| ecaresnet50t | ✅ |
+----------------------------------+------------------+
| ecaresnet101d | ✅ |
+----------------------------------+------------------+
| ecaresnet101d_pruned | ✅ |
+----------------------------------+------------------+
| ecaresnet200d | ✅ |
+----------------------------------+------------------+
| ecaresnet269d | ✅ |
+----------------------------------+------------------+
| ecaresnetlight | ✅ |
+----------------------------------+------------------+
| ecaresnext26t_32x4d | ✅ |
Expand All @@ -213,10 +223,10 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| efficientnet_b0 | ✅ |
+----------------------------------+------------------+
| efficientnet_b0_g16_evos | ✅ |
+----------------------------------+------------------+
| efficientnet_b0_g8_gn | ✅ |
+----------------------------------+------------------+
| efficientnet_b0_g16_evos | ✅ |
+----------------------------------+------------------+
| efficientnet_b0_gn | ✅ |
+----------------------------------+------------------+
| efficientnet_b1 | ✅ |
Expand Down Expand Up @@ -333,12 +343,12 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| ghostnet_130 | |
+----------------------------------+------------------+
| ghostnetv2_050 | |
+----------------------------------+------------------+
| ghostnetv2_100 | |
+----------------------------------+------------------+
| ghostnetv2_130 | |
+----------------------------------+------------------+
| ghostnetv2_160 | |
+----------------------------------+------------------+
| halo2botnet50ts_256 | ✅ |
+----------------------------------+------------------+
| halonet26t | ✅ |
Expand Down Expand Up @@ -711,14 +721,14 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| regnety_160 | ✅ |
+----------------------------------+------------------+
| regnety_1280 | ✅ |
+----------------------------------+------------------+
| regnety_2560 | ✅ |
+----------------------------------+------------------+
| regnety_320 | ✅ |
+----------------------------------+------------------+
| regnety_640 | ✅ |
+----------------------------------+------------------+
| regnety_1280 | ✅ |
+----------------------------------+------------------+
| regnety_2560 | ✅ |
+----------------------------------+------------------+
| regnetz_005 | ✅ |
+----------------------------------+------------------+
| regnetz_040 | ✅ |
Expand All @@ -733,12 +743,12 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| regnetz_c16_evos | ✅ |
+----------------------------------+------------------+
| regnetz_d32 | ✅ |
+----------------------------------+------------------+
| regnetz_d8 | ✅ |
+----------------------------------+------------------+
| regnetz_d8_evos | ✅ |
+----------------------------------+------------------+
| regnetz_d32 | ✅ |
+----------------------------------+------------------+
| regnetz_e8 | ✅ |
+----------------------------------+------------------+
| repghostnet_050 | |
Expand Down Expand Up @@ -837,12 +847,12 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| resnet50 | ✅ |
+----------------------------------+------------------+
| resnet50_gn | ✅ |
+----------------------------------+------------------+
| resnet50_clip | ✅ |
+----------------------------------+------------------+
| resnet50_clip_gap | ✅ |
+----------------------------------+------------------+
| resnet50_gn | ✅ |
+----------------------------------+------------------+
| resnet50_mlp | ✅ |
+----------------------------------+------------------+
| resnet50c | ✅ |
Expand Down Expand Up @@ -1001,6 +1011,8 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| sebotnet33ts_256 | ✅ |
+----------------------------------+------------------+
| sedarknet21 | ✅ |
+----------------------------------+------------------+
| sehalonet33ts | ✅ |
+----------------------------------+------------------+
| selecsls42 | |
Expand Down Expand Up @@ -1045,14 +1057,6 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| seresnetaa50d | ✅ |
+----------------------------------+------------------+
| seresnext101_32x4d | ✅ |
+----------------------------------+------------------+
| seresnext101_32x8d | ✅ |
+----------------------------------+------------------+
| seresnext101_64x4d | ✅ |
+----------------------------------+------------------+
| seresnext101d_32x8d | ✅ |
+----------------------------------+------------------+
| seresnext26d_32x4d | ✅ |
+----------------------------------+------------------+
| seresnext26t_32x4d | ✅ |
Expand All @@ -1061,6 +1065,14 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| seresnext50_32x4d | ✅ |
+----------------------------------+------------------+
| seresnext101_32x4d | ✅ |
+----------------------------------+------------------+
| seresnext101_32x8d | ✅ |
+----------------------------------+------------------+
| seresnext101_64x4d | ✅ |
+----------------------------------+------------------+
| seresnext101d_32x8d | ✅ |
+----------------------------------+------------------+
| seresnextaa101d_32x8d | ✅ |
+----------------------------------+------------------+
| seresnextaa201d_32x8d | ✅ |
Expand Down Expand Up @@ -1163,6 +1175,22 @@ These models typically produce feature maps at the following downsampling scales
+----------------------------------+------------------+
| tinynet_e | ✅ |
+----------------------------------+------------------+
| vgg11 | |
+----------------------------------+------------------+
| vgg11_bn | |
+----------------------------------+------------------+
| vgg13 | |
+----------------------------------+------------------+
| vgg13_bn | |
+----------------------------------+------------------+
| vgg16 | |
+----------------------------------+------------------+
| vgg16_bn | |
+----------------------------------+------------------+
| vgg19 | |
+----------------------------------+------------------+
| vgg19_bn | |
+----------------------------------+------------------+
| vovnet39a | |
+----------------------------------+------------------+
| vovnet57a | |
Expand Down Expand Up @@ -1440,6 +1468,18 @@ Transformer-style models (e.g., Swin Transformer, ConvNeXt) typically produce fe
+------------------------------------+------------------+
| mvitv2_tiny | |
+------------------------------------+------------------+
| nest_base | |
+------------------------------------+------------------+
| nest_base_jx | |
+------------------------------------+------------------+
| nest_small | |
+------------------------------------+------------------+
| nest_small_jx | |
+------------------------------------+------------------+
| nest_tiny | |
+------------------------------------+------------------+
| nest_tiny_jx | |
+------------------------------------+------------------+
| nextvit_base | |
+------------------------------------+------------------+
| nextvit_large | |
Expand Down
Loading