DevOps automation and orchestration for the Vamana-Nestor intelligent code analysis system.
The Vamana-Nestor system operates in a two-phase pipeline:
graph LR
subgraph PHASE1[π’ PHASE 1: EXTRACTION]
V1[Git Repo +<br/>Confluence]
V2[Vamana<br/>Multi-Agent<br/>Analysis]
V3[JSON<br/>Knowledge<br/>Files]
end
subgraph PHASE2[π΅ PHASE 2: LOAD & QUERY]
N1[Agent Helper<br/>Load Data]
N2[Letta Agent<br/>+ Memory]
N3[Chainlit UI<br/>Chat Interface]
end
User1[π¨βπ» Developer]
User2[π‘ AI Insights]
V1 --> V2
V2 --> V3
V3 --> N1
N1 --> N2
N2 --> N3
User1 -->|Initiates| V1
User1 -->|Queries| N3
N3 -->|Responds| User2
classDef phase1Style fill:#4CAF50,stroke:#2E7D32,stroke-width:3px,color:#fff
classDef phase2Style fill:#2196F3,stroke:#1565C0,stroke-width:3px,color:#fff
classDef userStyle fill:#FF5722,stroke:#D84315,color:#fff
class V1,V2,V3 phase1Style
class N1,N2,N3 phase2Style
class User1,User2 userStyle
Input β Process β Store
graph TD
Input1[π¦ Git Repository]
Input2[π Confluence Docs]
Start[π Vamana CrewAI Flow]
subgraph Crews[Parallel Processing]
LC[Logic Extraction Crew]
KC[Knowledge Synthesizer Crew]
L1[π€ Logic Extractor Agent]
L2[π€ Domain Agent]
K1[π€ Doc Analyst Agent]
K2[π€ Synthesizer Agent]
end
Output1[domain_details.json]
Output2[confluence_analysis.json]
Final[π knowledge/output/]
Input1 --> Start
Input2 --> Start
Start --> Crews
LC --> L1
L1 --> L2
L2 --> Output1
KC --> K1
K1 --> K2
K2 --> Output2
Output1 --> Final
Output2 --> Final
classDef inputStyle fill:#9C27B0,stroke:#6A1B9A,color:#fff
classDef processStyle fill:#4CAF50,stroke:#2E7D32,color:#fff
classDef outputStyle fill:#FF9800,stroke:#E65100,color:#fff
class Input1,Input2 inputStyle
class Start,LC,KC,L1,L2,K1,K2 processStyle
class Output1,Output2,Final outputStyle
Load β Configure β Query
graph TD
Input[π knowledge/output/]
Helper[π§ Agent Helper<br/>agent_main.py]
Create[Create Letta Agent]
subgraph Storage[Storage Options]
DB[(π PostgreSQL<br/>Archival Store)]
Folder[π Shared Folder<br/>File-based]
end
Agent[π€ Letta Agent + Memory]
Server[βοΈ Letta Server :8283]
UI[π¬ Chainlit UI :8000]
Dev[π¨βπ» Developer Queries]
Input --> Helper
Helper --> Create
Create --> Storage
DB -.-> Agent
Folder -.-> Agent
Agent --> Server
Server --> UI
UI --> Dev
classDef inputStyle fill:#FF9800,stroke:#E65100,color:#fff
classDef processStyle fill:#2196F3,stroke:#1565C0,color:#fff
classDef storageStyle fill:#9C27B0,stroke:#6A1B9A,color:#fff
classDef userStyle fill:#00BCD4,stroke:#006064,color:#fff
class Input inputStyle
class Helper,Create,Agent,Server processStyle
class DB,Folder storageStyle
class UI,Dev userStyle
| Component | Technology | Purpose |
|---|---|---|
| CrewAI Flow | Python, CrewAI | Orchestrates multi-agent extraction |
| Logic Extraction Crew | 2 Agents | Extracts code logic and domain models |
| Knowledge Synthesizer Crew | 2 Agents | Processes documentation and requirements |
| Helper Methods | Python | File filtering, git exclusion |
| Progress GUI | tkinter | Real-time progress visualization |
Output: Consolidated JSON files in vamana/src/logic_generator_flow/knowledge/output/
| Component | Technology | Purpose |
|---|---|---|
| Agent Helper | Python, Letta Client | Manages agent lifecycle |
| Letta Agent | Letta Framework | Memory-enabled AI agent |
| Letta Server | REST API (:8283) | Agent orchestration backend |
| PostgreSQL | Database (:5432) | Persistent knowledge storage |
| Chainlit UI | Web Interface (:8000) | Conversational interface |
Output: Interactive AI assistant with code intelligence
sequenceDiagram
participant Dev as Developer
participant Vamana as Vamana Flow
participant JSON as JSON Storage
participant Nestor as Nestor Agent
participant UI as Chainlit UI
Note over Dev,UI: PHASE 1: EXTRACTION
Dev->>Vamana: crewai flow kickoff
Vamana->>Vamana: Scan & analyze codebase
Vamana->>Vamana: Process documentation
Vamana->>JSON: Save consolidated JSON
Note over Dev,UI: PHASE 2: LOAD
Dev->>Nestor: python agent_main.py
Nestor->>JSON: Read all JSON files
Nestor->>Nestor: Create AnalysisAgent
Nestor->>Nestor: Load to storage
Note over Dev,UI: PHASE 3: QUERY
Dev->>UI: chainlit run
Dev->>UI: Ask questions
UI->>Nestor: Query knowledge
Nestor->>UI: AI-powered responses
# Vamana environment
conda activate Conversational-Agentic-Pipeline
# Nestor requirements
pip install letta chainlitcd /Users/pradip/Development/vamana
crewai flow kickoff
# Output: knowledge/output/*.json filesTerminal 1 - Start Letta Server:
letta server
# Server running on http://localhost:8283Terminal 2 - Create Agent:
cd /Users/pradip/Development/nestor/src/crews/agents
python agent_main.py
# Agent created with knowledge loadedTerminal 3 - Launch UI:
cd /Users/pradip/Development/nestor/src/crews/chainlit
chainlit run chainlit_conversational_agent.py
# UI available at http://localhost:8000dev-ops/
βββ README.md # This file
βββ architecture.md # Complete architecture documentation
βββ DIAGRAMS_INDEX.md # Diagram file mapping
βββ architecture-all-*.svg # Exported architecture diagrams
βββ architecture-all-*.png # PNG versions of diagrams
βββ n8n/
β βββ docker-compose.yml # n8n automation setup
β βββ workflows/ # Automation workflows
βββ scripts/
βββ run-nestor.sh # Nestor automation script
βββ run-vamana.sh # Vamana automation script
Six comprehensive diagrams have been generated showing the complete system architecture:
- High-Level System Architecture - Overall system components and flow
- Data Flow Sequence - Step-by-step execution sequence
- Vamana Internal Flow - Extraction phase processing
- Nestor Agent Creation - Agent setup and configuration
- Network Architecture - Ports, protocols, and connections
- Component Breakdown - Detailed component organization
View Diagrams: All diagrams are available in both SVG and PNG formats. See DIAGRAMS_INDEX.md for details.
Regenerate Diagrams:
cd /Users/pradip/Development/dev-ops
mmdc -i architecture.md -o architecture-all.svg- Framework: CrewAI (MIT License)
- Language: Python 3.11+
- Tools: DirectoryReadTool, FileReadTool
- Validation: Pydantic (MIT License)
- GUI: tkinter (PSF License)
- API Integration: atlassian-python-api (Apache 2.0)
- Agent Framework: Letta (Apache 2.0)
- UI Framework: Chainlit (Apache 2.0)
- Database: PostgreSQL
- Client: letta-client
- LLM: OpenAI GPT-4o-mini
- Embeddings: OpenAI text-embedding-ada-002
- Environment: python-dotenv (BSD-3-Clause)
| Service | Port | Protocol | Purpose |
|---|---|---|---|
| Chainlit UI | 8000 | HTTP/WebSocket | User interface |
| Letta Server | 8283 | HTTP/REST | Agent management |
| PostgreSQL | 5432 | TCP | Knowledge storage |
- Initialization: ~5 seconds
- File Processing: 10-30 seconds per file
- Consolidation: 10-15 seconds
- Total Time: 20-30 minutes
- Server Start: ~5 seconds
- Agent Creation: 2-3 seconds
- Data Loading (DB): 60-90 seconds for 150 passages
- Data Loading (Folder): 30-45 seconds for 50 files
- Query Response: 2-5 seconds per query
- API keys stored in
.envfiles (never commit to git) - Letta token generated per server session
- PostgreSQL credentials with limited permissions
- Local processing (code never leaves machine except LLM API calls)
- HTTPS/TLS for external API communication
- File system permissions for access control
- Vamana README:
/Users/pradip/Development/vamana/README.md - Nestor README:
/Users/pradip/Development/nestor/src/readme.md - Architecture Details:
architecture.md - Diagram Index:
DIAGRAMS_INDEX.md
This DevOps pipeline is part of the Vamana-Nestor intelligent code analysis system. For questions or contributions, please refer to the individual project READMEs.
Version: 2.0
Last Updated: November 20, 2025
Status: Production Ready