A multi-generational family card game that has captivated players for decades - now with computational analysis to discover just how special that "once in a lifetime" moment truly is!
This repository contains the computational analysis of a beloved family solitaire game passed down through generations. What started as a friendly family debate about the difficulty of achieving victory led to one of the most extensive card game probability studies ever conducted - with over 700 million simulated games!
The catalyst? A confident family member claimed to have won "several times" and found it "boring." With 40+ years of gameplay experience and a background in quantitative analysis, the challenge was set: prove just how extraordinary a win truly is.
Once In A Lifetime is a solitaire card game where the ultimate goal is to consolidate all 52 cards into a single stack. The name perfectly captures the rarity of this achievement - as our extensive computational analysis reveals!
- Start with a standard 52-card deck, shuffled
- Your goal: Get all cards into one stack
-
Initial Play: Draw and place the first card face-up
โ ๏ธ -
Draw and Compare: Draw the next card from the deck
-
Matching Logic: The new card is compared to existing stack tops using these rules:
- Cards match if they have the same rank OR same suit
- New cards can match with stacks in two specific positions only:
- Adjacent stack (immediately to the left)
- Stack exactly 3 positions back (3 positions to the left)
Position Rule Example (with stacks Z, C, Y, X from left to right):
Z C Y X โ ๏ธK โฆ๏ธ5 โฃ๏ธ7 [New Card: โ ๏ธA] โ ๏ธA can match with: โ Y (adjacent): โ ๏ธA vs โฃ๏ธ7 = No match โ Z (3 back): โ ๏ธA vs โ ๏ธK = Same suit! Match! โ C (2 back): Not allowed by rules -
Player Choice: If both positions have matches, player chooses one (but not both)
-
Stack Consolidation: When cards match, place the new card on top:
Before: โ ๏ธK โฆ๏ธ5 โฃ๏ธ7 After: โ ๏ธA โฆ๏ธ5 โฃ๏ธ7 โ ๏ธK -
Cascading Matches: After any match, check if stacks can now merge using the same position rules
-
No Match Rule: If no valid match exists (adjacent OR 3-back), create a new stack to the right
-
Scoring: Continue until all 52 cards are drawn. Count your final stacks - fewer is better!
| Stacks | Achievement Level | Rarity |
|---|---|---|
| ๐ 1 stack | ONCE IN A LIFETIME! | Extraordinarily Rare |
| ๐ฅ 2 stacks | Legendary | 0.18% of games |
| ๐ฅ 3 stacks | Exceptional | 13.3% of games |
| ๐ 4-5 stacks | Good Game | 78% of games |
| ๐ 6+ stacks | Keep Trying! | 8.3% of games |
# Run the latest, most complete version
python OiaLver0.0.5.py
# Try the clean, object-oriented version
python GoodOne2.py
# These will run 10,000 simulations by default# For serious statistical analysis
julia OnceInALifetime.jl 1000000 # 1 million games
julia OnceInALifetime.jl 1000000000 # 1 billion games!
# Standard version with plotting
julia OiaLver0.0.5.jl- Python:
matplotlibfor visualizations - Julia:
Random,Plotspackages
Using high-performance Julia code, we conducted one of the largest solitaire simulations ever:
- 700+ million games simulated
- Multiple implementations to verify accuracy
- Statistical analysis of score distributions
- Performance optimization achieving 240,000+ games/second
After 700 million simulations:
- ๐ Wins achieved: 0
- ๐ Upper bound probability: Less than 1 in 700 million
- ๐ฏ Conclusion: "Once In A Lifetime" is perfectly named!
| Implementation | Games/Second | Best Use Case |
|---|---|---|
| Python (OiaLver0.0.5) | ~35,000 | Learning & Visualization |
| Python (GoodOne2) | ~35,000 | Clean Code Study |
| Julia | ~240,000 | Large-Scale Analysis |
๐ฏ 2 stacks: โโโโ 0.18% (1,830 games) - LEGENDARY!
๐ 3 stacks: โโโโโโโโโโโโโโโโ 13.28% - Exceptional
๐ 4 stacks: โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ 46.50% - Great!
๐ 5 stacks: โโโโโโโโโโโโโโโโโโโโโโโโโโโโ 31.73% - Good!
๐ 6+ stacks: โโโโโโ 8.31% - Keep playing!
OiaLver0.0.5.py- ๐ Most complete with matplotlib histogramsGoodOne2.py- ๐ฏ Clean, object-oriented designOiaLver0.0.1.pyto0.0.4.py- ๐ Evolution of development- Alternative versions - Various approaches and experiments
OnceInALifetime.jl- ๐ High-performance simulation engineOiaLver0.0.5.jl- ๐ Full-featured with plotting capabilities
OnceInALifetime.qmd- ๐ Complete narrative and analysisCLAUDE.md- ๐ค AI development guidance
from OiaLver0_0_5 import main
main(iterations=1) # Play one game and see your score!main(iterations=100000) # Analyze 100K gamesmain() # Run until first win (could take a VERY long time!)- Restrictive Position Rules: Cards can ONLY match adjacent OR exactly 3 positions back - no other positions allowed
- Limited Matching Options: Only rank OR suit matching
- Sequential Dependencies: Card order matters tremendously
- Cascade Complexity: Matches can trigger chain reactions, but still follow strict position rules
- Choice Constraints: When both positions have matches, choosing one eliminates the other opportunity
- Probabilistic Convergence: Getting close requires multiple rare events aligning perfectly
- 52! possible deck arrangements: 8.07 ร 10โถโท combinations
- Complex state space: Each card placement creates branching possibilities
- Convergence requirements: Multiple perfect matching sequences needed
- Statistical significance: 700M+ samples provide robust probability bounds
Our computational analysis definitively proves that achieving a "Once In A Lifetime" victory is:
โจ Extraordinarily rare - Less than 1 in 700 million chance
๐ฏ Perfectly named - The game title captures the true rarity
๐งฌ Statistically fascinating - A beautiful example of complex probability
๐จโ๐ฉโ๐งโ๐ฆ Family legend confirmed - 40+ years of gameplay experience validated!
While winning is incredibly rare, this makes the game:
- Endlessly replayable - Every game offers hope!
- Statistically fascinating - Each attempt contributes to understanding
- Family bonding material - Shared challenge across generations
- Computational showcase - Demonstrates the power of simulation
- Mathematical beauty - Probability theory in action
Feel free to:
- ๐ง Optimize the algorithms further
- ๐ Add new visualization features
- ๐งช Experiment with rule variations
- ๐ Extend the statistical analysis
- ๐ฎ Create interactive versions
This family card game simulation is shared freely - may it bring joy and statistical wonder to your household too!
"The best part about a 1-in-700-million chance? It's not zero!" ๐ฒโจ