MAKGED is the first multi-agent framework for collaborative error detection in knowledge graphs, addressing two critical challenges in KG quality management:
- Multi-Perspective Analysis: Overcomes single-view limitations through bidirectional subgraph analysis
- Transparent Decision-Making: Implements explainable error detection via structured agent discussions
Key innovations:
- π― 4 Specialized Agents: Head/Tail Γ Forward/Backward agent architecture
- π Hybrid Embeddings: Combines GCN-based structural features with LLM semantic features
- π€ LLM-Powered Collaboration: Implements 3-round discussion protocol with tiebreaker mechanism
- π Industrial Proven: Validated with China Mobile's KGs
-
Bidirectional Subgraph Construction
- Head_Forward/Backward Subgraphs
- Tail_Forward/Backward Subgraphs
-
Hybrid Embedding Generator
graph TD A[Subgraph Structure] --> B[3-Layer GCN] C[Triple Text] --> D[Llama-2 Embedding] B --> E[Concatenation Layer] D --> E E --> F[Unified Representation]
-
Multi-Agent Discussion Protocol
- Phase 1: Independent Analysis
- Phase 2: 3-Round Discussion
- Phase 3: Summarizer Voting (for ties)
Dataset | Triples | Entities | Relations | Error Rate |
---|---|---|---|---|
FB15K | 44,000 | 14,541 | 237 | 30.2% |
WN18RR | 33,134 | 40,943 | 11 | 30.7% |
Models | FB15K Accuracy | FB15K F1-Score | FB15K Precision | FB15K Recall | WN18RR Accuracy | WN18RR F1-Score | WN18RR Precision | WN18RR Recall |
---|---|---|---|---|---|---|---|---|
Embedding-Based Methods | ||||||||
TransE | 0.6373 | 0.6312 | 0.6410 | 0.6531 | 0.3813 | 0.2927 | 0.6255 | 0.5083 |
DistMult | 0.5938 | 0.5132 | 0.5261 | 0.5204 | 0.6401 | 0.5157 | 0.5965 | 0.5449 |
ComplEx | 0.6268 | 0.4781 | 0.5413 | 0.5172 | 0.6414 | 0.4450 | 0.6464 | 0.5217 |
CAGED | 0.6091 | 0.4574 | 0.5028 | 0.4552 | 0.6544 | 0.5064 | 0.5532 | 0.5013 |
KGTtm | 0.6828 | 0.4078 | 0.6172 | 0.3045 | 0.6911 | 0.4487 | 0.6589 | 0.3402 |
PLM-based Methods | ||||||||
KG-BERT | 0.7675 | 0.6280 | 0.7371 | 0.5470 | 0.8162 | 0.7222 | 0.8177 | 0.6468 |
StAR | 0.7350 | 0.6017 | 0.6900 | 0.5420 | 0.7012 | 0.6100 | 0.6572 | 0.5645 |
CSProm-KG | 0.7078 | 0.5509 | 0.6139 | 0.4997 | 0.7116 | 0.6025 | 0.6138 | 0.4997 |
Contrastive Learning-based Methods | ||||||||
SeSICL | 0.5950 | 0.4600 | 0.5513 | 0.5172 | 0.5050 | 0.4073 | 0.4421 | 0.5711 |
CCA | 0.7456 | 0.6810 | 0.7123 | 0.6537 | 0.7621 | 0.7134 | 0.7568 | 0.6912 |
LLM-based Methods | ||||||||
Llama2 | 0.7420 | 0.6010 | 0.7250 | 0.6851 | 0.7100 | 0.6271 | 0.7021 | 0.6344 |
GPT-3.5 | 0.7445 | 0.6117 | 0.7185 | 0.6555 | 0.7603 | 0.7496 | 0.7120 | 0.6260 |
Llama3 | 0.7558 | 0.6264 | 0.7357 | 0.7148 | 0.7654 | 0.7522 | 0.7185 | 0.6327 |
Our Methods | ||||||||
MAKGED | 0.7748 | 0.7367 | 0.7686 | 0.7252 | 0.8283 | 0.7909 | 0.8832 | 0.7704 |
If you find our paper and resource useful in your research, please consider giving a star β and citation π.
@article{li2025harnessing,
title={Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs},
author={Li, Yu and Huang, Yi and Qi, Guilin and Feng, Junlan and Hu, Nan and Zhai, Songlin and Xue, Haohan and Chen, Yongrui and Shen, Ruoyan and Wu, Tongtong},
journal={arXiv preprint arXiv:2501.15791},
year={2025}
}
For technical inquiries:
Yu Li - Southeast University