Skip to content

aws-samples/sample-strands-agentcore-starter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AgentCore + Strands Agents Starter Application

A full-stack conversational AI starter kit built with Amazon Bedrock AgentCore, Strands Agents SDK, FastAPI, and htmx. This project is used for rapid prototyping of agentic applications. It accelerates proof-of-concept development with built-in telemetry capture, usage analytics, and cost projections.

Agent Chat UI

Why This Starter?

Building AI agents is exciting, but understanding their usage, results, and cost profile is critical before scaling. This starter provides:

  • Ready-to-deploy agent with memory persistence, guardrails, and tool support
  • Built-in usage analytics tracking every token, tool call, and model invocation
  • User feedback capture for each response to understand usefulness
  • Cost projections to forecast production spending from PoC usage patterns
  • Real-time streaming for responsive user experience
  • Customizable foundation to change models, add tools, and extend functionality

Key Features

  • 🤖 AI-powered conversational agent with short-term (STM) and long-term memory (LTM)
  • Streaming chat with embedded memory viewer
  • 📊 Admin dashboard with usage analytics and cost tracking
  • 💰 Cost projections based on actual usage patterns
  • 👍 User feedback with sentiment ratings and comments
  • 🛡️ Guardrails analytics with violation tracking and content filtering
  • 📝 Prompt templates for quick access to pre-defined prompts
  • ☁️ Containerized deployment using Amazon ECS Express Mode
  • 🧠 AI Agents powered by Amazon Bedrock AgentCore using the Strands Agents SDK
  • 🔐 Secure authentication via Amazon Cognito

Admin Dashboard

The built-in admin dashboard (/admin) provides comprehensive usage analytics:

📊 Dashboard Overview /admin

  • Total tokens, invocations, estimated costs
  • Top users and tools by usage
  • Model breakdown with per-model costs
  • Projected monthly cost
  • Feedback and guardrails summary

🔢 Token Analytics /admin/tokens

  • Token usage breakdown by model
  • Input vs output distribution
  • Cost per model comparison
  • Time-range filtering

👥 User Analytics /admin/users

  • Per-user token usage and session counts
  • Search users by ID
  • Drill-down to individual sessions
  • Sorted by total tokens

📋 Session Details /admin/sessions/{id}

  • Complete session token usage
  • Tools invoked with success/error rates
  • Individual invocation records
  • Model and latency information

👍 Feedback Analytics /admin/feedback

  • Thumbs up/down on responses
  • Optional comments on negative feedback
  • Filter by sentiment and date range
  • Drill-down to conversation context

🛡️ Guardrails Analytics /admin/guardrails

  • Violation tracking by filter type
  • Filter strength and confidence levels
  • Source breakdown (input vs output)
  • Expandable violation details

🔧 Tool Analytics /admin/tools

  • Call counts per tool
  • Success/error rates
  • Average execution times

📝 Prompt Templates /admin/templates

  • Create reusable prompt templates
  • Edit title, description, and prompt text
  • Templates appear in chat UI dropdown
  • Default "Capabilities" template included

Usage Dashboard

Architecture

┌─────────────────┐      ┌─────────────────┐      ┌─────────────────┐      ┌─────────────────┐
│     Browser     │      │   ECS Express   │      │   Guardrails    │      │    AgentCore    │
│  Chat + Admin   │◀────▶│    (Fargate)    │◀────▶│   (Bedrock)     │◀────▶│     Runtime     │
│                 │ SSE  │    FastAPI      │      │                 │      │  Strands Agent  │
└─────────────────┘      └─────────────────┘      └─────────────────┘      └─────────────────┘
        │                       │                                           │           │
        │                       ▼                                           │           ▼
        │                ┌─────────────────┐                                │   ┌───────────────┐
        │                │    DynamoDB     │                                │   │    Bedrock    │
        │                │  Usage/Feedback │                                │   │ Choice of LLM │
        │                └─────────────────┘                                │   └───────────────┘
        ▼                                                                   ▼
┌─────────────────┐                                                 ┌─────────────────┐
│     Cognito     │                                                 │    AgentCore    │
│      Auth       │                                                 │     Memory      │
└─────────────────┘                                                 └─────────────────┘

Prerequisites

Tool Minimum Version Purpose
Node.js 18.x+ CDK runtime
AWS CDK CLI 2.x Infrastructure deployment
AWS CLI 2.x AWS resource management

Install CDK CLI globally:

npm install -g aws-cdk

Note: Docker is not required locally - all container builds are handled by AWS CodeBuild.

AWS Requirements

  • AWS Account with a Default VPC
  • IAM permissions with access to Bedrock, Bedrock AgentCore, ECS, Cognito, ECR, DynamoDB, Secrets Manager

Quick Start

  1. Clone the repository:

    git clone https://github.com/aws-samples/sample-strands-agentcore-starter
    cd sample-strands-agentcore-starter
  2. Install CDK dependencies:

    cd cdk
    npm install
  3. Deploy all stacks:

    ./deploy-all.sh --region <aws-region-id>
  4. Create a test user (add --admin for admin access):

    cd ../chatapp/deploy
    ./create-user.sh your-email@example.com YourPassword123@ --admin
  5. Wait for ECS deployment (4-6 minutes), then access the URL shown in the deployment output.

The deployment creates:

  • Cognito User Pool for authentication
  • DynamoDB tables for usage analytics, feedback, and guardrails
  • Bedrock Guardrail for content filtering
  • Bedrock Knowledge Base with S3 Vectors
  • AgentCore Memory with LTM strategies
  • AgentCore Runtime with the deployed agent
  • ECS Express Mode service for the ChatApp

Deployment Options

./deploy-all.sh [options]

Options:
  --region <region>    AWS region (default: us-east-1)
  --profile <profile>  AWS CLI profile to use
  --dry-run            Show what would be deployed without deploying

Stack Architecture

The CDK deployment creates 4 consolidated CloudFormation stacks:

Stack Description Key Resources
Foundation Auth, Storage, IAM, Secrets Cognito, DynamoDB tables, ECS roles, Secrets Manager
Bedrock AI/ML Resources Guardrail, Knowledge Base (S3 Vectors), AgentCore Memory
Agent Agent Infrastructure ECR, CodeBuild, AgentCore Runtime, Observability
ChatApp Application ECR, CodeBuild, S3 source, ECS Express Mode service

Deployment order: Foundation → Bedrock → Agent → ChatApp

Multi-Region Deployment

The CDK stacks support deploying to multiple regions in the same AWS account. IAM roles are automatically suffixed with the region name to avoid conflicts.

# Deploy to us-east-1
./deploy-all.sh --region us-east-1

# Deploy to eu-west-1 (same account)
./deploy-all.sh --region eu-west-1

Useful Commands

# List all stacks
npx cdk list

# Deploy a specific stack
npx cdk deploy htmx-chatapp-Foundation

# View stack differences before deploying
npx cdk diff

# Synthesize CloudFormation templates
npx cdk synth

# View stack outputs
cat cdk-outputs.json

Updating Deployments

To update the application after code changes:

cd cdk
./deploy-all.sh --region <aws-region-id>

To update only the ChatApp (faster for UI changes):

cd cdk
npx cdk deploy htmx-chatapp-ChatApp --require-approval never

Local Development

For local development, you need to sync environment variables from your deployed CDK stacks.

Prerequisites: CDK stacks must be deployed first (./deploy-all.sh).

cd chatapp
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

# Sync .env from AWS Secrets Manager (auto-populates all values)
./sync-env.sh --region <aws-region-id>

# Or with DEV_MODE (bypasses Cognito authentication)
./sync-env.sh --region <aws-region-id> --dev-mode

# Run locally
uvicorn app.main:app --reload --port 8080

DEV_MODE: When enabled, Cognito authentication is bypassed and requests use a default dev-user-001 user ID. This is useful for rapid iteration without needing to log in. Set DEV_USER_ID in .env to customize the user ID.

Manual .env setup: If you prefer manual configuration, copy .env.example to .env and fill in values. The secret htmx-chatapp/config in AWS Secrets Manager contains all required values.

Cleanup

To destroy all CDK-managed resources:

cd cdk
./destroy-all.sh --region <aws-region-id>

Options:

./destroy-all.sh [options]

Options:
  --region <region>    AWS region (default: us-east-1)
  --profile <profile>  AWS CLI profile to use
  --yes                Auto-confirm all prompts (DANGEROUS)
  --dry-run            Show what would be destroyed without destroying

Environment Variables

Agent

Variable Description
BEDROCK_AGENTCORE_MEMORY_ID AgentCore Memory ID
AWS_REGION AWS region

ChatApp

Variable Required Description
COGNITO_USER_POOL_ID Yes Cognito User Pool ID
COGNITO_CLIENT_ID Yes Cognito App Client ID
COGNITO_CLIENT_SECRET Yes Cognito App Client Secret
AGENTCORE_RUNTIME_ARN Yes AgentCore Runtime ARN
MEMORY_ID Yes AgentCore Memory ID
USAGE_TABLE_NAME Yes DynamoDB table for usage records
FEEDBACK_TABLE_NAME Yes DynamoDB table for feedback records
GUARDRAIL_TABLE_NAME Yes DynamoDB table for guardrail violations
GUARDRAIL_ID No Bedrock Guardrail ID for content filtering
GUARDRAIL_VERSION No Bedrock Guardrail version (default: DRAFT)
GUARDRAIL_ENABLED No Enable/disable guardrail evaluation (default: true)
PROMPT_TEMPLATES_TABLE_NAME Yes DynamoDB table for prompt templates
APP_URL No Application URL for callbacks
AWS_REGION Yes AWS region

Project Structure

sample-strands-agentcore-starter/
├── agent/                        # AgentCore agent
│   ├── my_agent.py               # Agent definition
│   ├── tools/                    # Agent tools
│   └── requirements.txt
│
├── chatapp/                      # Chat and Admin UI
│   ├── app/
│   │   ├── main.py               # FastAPI application
│   │   ├── admin/                # Usage analytics module
│   │   ├── auth/                 # Cognito authentication
│   │   ├── agentcore/            # AgentCore client
│   │   ├── storage/              # Data storage services
│   │   ├── routes/               # Chat and Admin API routes
│   │   ├── models/               # Data models
│   │   └── templates/            # UI templates
│   ├── deploy/
│   │   └── create-user.sh        # User creation script
│   └── requirements.txt
│
├── cdk/                          # CDK Infrastructure
│   ├── lib/
│   │   ├── foundation-stack.ts   # Auth, Storage, IAM, Secrets
│   │   ├── bedrock-stack.ts      # Guardrail, KB, Memory
│   │   ├── agent-stack.ts        # ECR, CodeBuild, Runtime
│   │   └── chatapp-stack.ts      # ECS Express Mode
│   ├── deploy-all.sh             # Full deployment script
│   └── destroy-all.sh            # Full cleanup script
│
└── README.md

Cost Tracking

The system tracks usage metrics for cost analysis:

Captured Metrics

  • Input/Output Tokens: Per invocation token counts
  • Model ID: Which model was used
  • Latency: Response time in milliseconds
  • Tool Usage: Call counts, success/error rates per tool
  • Guardrails Violations: Per filter type, user, and session

Default Models and Costs

Model Input Tokens (per 1M) Output Tokens (per 1M)
Amazon Nova 2 Lite $0.30 $2.50
Amazon Nova Pro $0.80 $3.20
Anthropic Claude Haiku 4.5 $1.00 $5.00
Anthropic Claude Sonnet 4.5 $3.00 $15.00
Anthropic Claude Opus 4.5 $5.00 $25.00

Monthly Projections

The dashboard calculates projected monthly costs using:

projected_monthly = (total_cost / days_in_period) * 20

Uses 20 business days for realistic production estimates.

Customization

Adding New Tools

Add tools in agent/tools/ and register them in my_agent.py.

Changing Models

Update the model ID in chatapp/app/static/js/chat.js and add pricing to chatapp/app/admin/cost_calculator.py.

Extending Analytics

The UsageRepository class in chatapp/app/admin/repository.py provides query methods that can be extended for custom analytics.

Knowledge Base Integration

The agent includes a Bedrock Knowledge Base for semantic search over curated documents. When configured, the agent prioritizes Knowledge Base results before falling back to web search.

Setup

The Knowledge Base is automatically created during CDK deployment. It creates:

  • S3 bucket for source documents
  • S3 Vectors bucket and index for embeddings
  • Bedrock Knowledge Base with Titan Embed Text v2
  • Data source connecting the KB to the S3 bucket

Adding Documents to the Knowledge Base

  1. Upload documents to S3:

    # Get the source bucket name from CDK outputs
    SOURCE_BUCKET=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".SourceBucketName')
    
    # Upload documents to the documents/ prefix
    aws s3 cp my-document.pdf s3://${SOURCE_BUCKET}/documents/
    aws s3 cp my-folder/ s3://${SOURCE_BUCKET}/documents/ --recursive
  2. Sync/Ingest documents:

    # Get the Knowledge Base ID and Data Source ID from CDK outputs
    KB_ID=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".KnowledgeBaseId')
    DS_ID=$(aws bedrock-agent list-data-sources --knowledge-base-id $KB_ID --query "dataSourceSummaries[0].dataSourceId" --output text)
    
    # Start ingestion job
    aws bedrock-agent start-ingestion-job \
      --knowledge-base-id $KB_ID \
      --data-source-id $DS_ID
    
    # Check ingestion status
    aws bedrock-agent list-ingestion-jobs \
      --knowledge-base-id $KB_ID \
      --data-source-id $DS_ID

Supported Document Formats

The Knowledge Base supports:

  • PDF (.pdf)
  • Plain text (.txt)
  • Markdown (.md)
  • HTML (.html)
  • Microsoft Word (.doc, .docx)
  • CSV (.csv)

How the Agent Uses the Knowledge Base

When the agent receives a query:

  1. The agent first searches the Knowledge Base for relevant context
  2. If relevant results are found (score >= min_score), the agent uses that context
  3. If no relevant results are found, the agent falls back to web search or URL fetcher

This prioritization ensures domain-specific knowledge takes precedence over general web content.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

About

A full-stack conversational AI starter kit built with Amazon Bedrock AgentCore, Strands Agents SDK, FastAPI, and htmx.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published