Skip to content

Tejasvichand/ai-governance-dashboard

Repository files navigation

AI Governance Dashboard

Welcome to Fairness Scanner β€” a full-stack AI governance interface for identifying and mitigating fairness risks in machine learning and LLM systems.

This project includes:

  • βœ… A modern Next.js frontend for dataset upload and visual analysis
  • βœ… A lightweight FastAPI backend powered by Giskard for automated fairness evaluation
  • βœ… Optional support for MinIO, Spark, and Dremio for scalable data lake integration

πŸš€ Features

  • πŸ“‚ Upload CSV or Excel datasets via the web UI
  • πŸ” Automatically detect protected attributes (e.g., gender, age, race)
  • βš–οΈ Run fairness diagnostics using Giskard
  • πŸ“Š Visualize results and trigger mitigation workflows
  • ☁️ Optional support for S3-compatible object storage (MinIO)
  • πŸ”Œ Extendable to integrate with Flink, Spark, Dremio, and LLM agents

πŸ—‚οΈ Project Structure

β”œβ”€β”€ frontend/         # Next.js (React) frontend
β”‚   β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ lib/
β”‚   β”œβ”€β”€ components/
β”‚   β”œβ”€β”€ public/
β”‚   └── ...
β”œβ”€β”€ backend/          # FastAPI + Giskard backend
β”‚   β”œβ”€β”€ main.py
β”‚   β”œβ”€β”€ upload.py
β”‚   └── requirements.txt
β”œβ”€β”€ setup.sh          # Dev environment setup script
└── README.md

🌐 Environment Variables

Specify the backend endpoint for the frontend using NEXT_PUBLIC_API_URL in frontend/.env.local:

NEXT_PUBLIC_API_URL=http://localhost:8000

This value is read by the browser when uploading datasets.