Welcome to Fairness Scanner β a full-stack AI governance interface for identifying and mitigating fairness risks in machine learning and LLM systems.
This project includes:
- β A modern Next.js frontend for dataset upload and visual analysis
- β A lightweight FastAPI backend powered by Giskard for automated fairness evaluation
- β Optional support for MinIO, Spark, and Dremio for scalable data lake integration
- π Upload CSV or Excel datasets via the web UI
- π Automatically detect protected attributes (e.g., gender, age, race)
- βοΈ Run fairness diagnostics using Giskard
- π Visualize results and trigger mitigation workflows
- βοΈ Optional support for S3-compatible object storage (MinIO)
- π Extendable to integrate with Flink, Spark, Dremio, and LLM agents
βββ frontend/ # Next.js (React) frontend
β βββ app/
β βββ lib/
β βββ components/
β βββ public/
β βββ ...
βββ backend/ # FastAPI + Giskard backend
β βββ main.py
β βββ upload.py
β βββ requirements.txt
βββ setup.sh # Dev environment setup script
βββ README.mdSpecify the backend endpoint for the frontend using NEXT_PUBLIC_API_URL in frontend/.env.local:
NEXT_PUBLIC_API_URL=http://localhost:8000This value is read by the browser when uploading datasets.