ModelQ is a lightweight Python library for scheduling and queuing machine learning inference tasks. It's designed as a faster and simpler alternative to Celery for ML workloads, using Redis and threading to efficiently run background tasks.
ModelQ is developed and maintained by the team at Modelslab.
About Modelslab: Modelslab provides powerful APIs for AI-native applications including:
- Image generation
- Uncensored chat
- Video generation
- Audio generation
- And much more
- ✅ Retry support (automatic and manual)
- ⏱ Timeout handling for long-running tasks
- 🔁 Manual retry using
RetryTaskException - 🎮 Streaming results from tasks in real-time
- 🧹 Middleware hooks for task lifecycle events
- ⚡ Fast, non-blocking concurrency using threads
- 🧵 Built-in decorators to register tasks quickly
- 💃 Redis-based task queueing
- 🖥️ CLI interface for orchestration
- 🔢 Pydantic model support for task validation and typing
- 🌐 Auto-generated REST API for tasks
pip install modelqOne of ModelQ's most powerful features is the ability to expose your tasks as HTTP endpoints automatically.
By running a single command, every registered task becomes an API route:
modelq serve-api --app-path main:modelq_app --host 0.0.0.0 --port 8000- Each task registered with
@q.task(...)is turned into a POST endpoint under/tasks/{task_name} - If your task uses Pydantic input/output, the endpoint will validate the request and return a proper response schema
- The API is built using FastAPI, so you get automatic Swagger docs at:
http://localhost:8000/docs
curl -X POST http://localhost:8000/tasks/add \
-H "Content-Type: application/json" \
-d '{"a": 3, "b": 7}'You can now build ML inference APIs without needing to write any web code!
You can interact with ModelQ using the modelq command-line tool. All commands require an --app-path parameter to locate your ModelQ instance in module:object format.
modelq run-workers main:modelq_app --workers 2Start background worker threads for executing tasks.
modelq status --app-path main:modelq_appShow number of servers, queued tasks, and registered task types.
modelq list-queued --app-path main:modelq_appDisplay a list of all currently queued task IDs and their names.
modelq clear-queue --app-path main:modelq_appRemove all tasks from the queue.
modelq remove-task --app-path main:modelq_app --task-id <task_id>Remove a specific task from the queue by ID.
modelq serve-api --app-path main:modelq_app --host 0.0.0.0 --port 8000 --log-level infoStart a FastAPI server for ModelQ to accept task submissions over HTTP.
modelq versionPrint the current version of ModelQ CLI.
More commands like requeue-stuck, prune-results, and get-task-status are coming soon.
from modelq import ModelQ
from modelq.exceptions import RetryTaskException
from redis import Redis
import time
imagine_db = Redis(host="localhost", port=6379, db=0)
q = ModelQ(redis_client=imagine_db)
@q.task(timeout=10, retries=2)
def add(a, b):
return a + b
@q.task(stream=True)
def stream_multiples(x):
for i in range(5):
time.sleep(1)
yield f"{i+1} * {x} = {(i+1) * x}"
@q.task()
def fragile(x):
if x < 5:
raise RetryTaskException("Try again.")
return x
q.start_workers()
task = add(2, 3)
print(task.get_result(q.redis_client))ModelQ supports Pydantic models as both input and output types for tasks. This allows automatic validation of input parameters and structured return values.
from pydantic import BaseModel, Field
from redis import Redis
from modelq import ModelQ
import time
class AddIn(BaseModel):
a: int = Field(ge=0)
b: int = Field(ge=0)
class AddOut(BaseModel):
total: int
redis_client = Redis(host="localhost", port=6379, db=0)
mq = ModelQ(redis_client=redis_client)
@mq.task(schema=AddIn, returns=AddOut)
def add(payload: AddIn) -> AddOut:
print(f"Processing addition: {payload.a} + {payload.b}.")
time.sleep(10) # Simulate some processing time
return AddOut(total=payload.a + payload.b)output = job.get_result(mq.redis_client, returns=AddOut)ModelQ will validate inputs using Pydantic and serialize/deserialize results seamlessly.
ModelQ allows you to plug in custom middleware to hook into events:
before_worker_bootafter_worker_bootbefore_worker_shutdownafter_worker_shutdownbefore_enqueueafter_enqueueon_error
from modelq.app.middleware import Middleware
class LoggingMiddleware(Middleware):
def before_enqueue(self, *args, **kwargs):
print("Task about to be enqueued")
def on_error(self, task, error):
print(f"Error in task {task.task_id}: {error}")Attach to ModelQ instance:
q.middleware = LoggingMiddleware()Connect to Redis using custom config:
from redis import Redis
imagine_db = Redis(host="localhost", port=6379, db=0)
modelq = ModelQ(
redis_client=imagine_db,
delay_seconds=10, # delay between retries
webhook_url="https://your.error.receiver/discord-or-slack"
)ModelQ is released under the MIT License.
We welcome contributions! Open an issue or submit a PR at github.com/modelslab/modelq.
