Skip to content

Ibrahim-Abdelqader/Organ-detector

Repository files navigation

Organ detector

πŸ“š Overview

This project implements a deep learning Convolutional Neural Network (CNN) to classify medical organ images into four categories: Heart, Brain, Liver, Limbs.


πŸ—’οΈ Table of content

  1. πŸ“½οΈ Video
  2. πŸ“‚ Project Structure
  3. πŸ› οΈ Prerequisites
  4. ✨ Key Features
  5. πŸ› οΈ Installation
  6. πŸ“Š Dataset Preparation
  7. 🧠 Model Architecture
  8. πŸš€ Training
  9. πŸͺ„ Usage
  10. πŸ“ˆ Performance Metrics
  11. πŸ’Ύ Model Saving
  12. πŸ› οΈ Customization
  13. ⚠️ Limitations
  14. πŸ“ˆ Future Improvements
  15. 🀝 Contributions
  16. πŸ“œ License
  17. πŸ“§ Contact

πŸ“½οΈ Video

Video1.mp4

πŸ“‚ Project Structure

project_root/
β”‚
β”œβ”€β”€ data_sets/
β”‚   β”œβ”€β”€ heart/
β”‚   β”œβ”€β”€ brain/
β”‚   β”œβ”€β”€ liver/
β”‚   └── limbs/
β”‚
β”œβ”€β”€ test_data/
β”‚   └── NONE/
β”‚
β”œβ”€β”€ save_model/
β”‚   └── organsClssify.h5
β”‚
└── logs/

πŸ› οΈ Prerequirments

  • Python 3.8+
  • TensorFlow
  • Numpy
  • Matplotlib

✨ Key Features

  • Image classification using CNN
  • Data augmentation
  • TensorBoard logging
  • Model saving and loading functionality
  • Visulization of training metrics

πŸ› οΈ Installation

  1. Clone the repository
  2. Install required dependencies:
pip install tensorflow numpy matplotlib

πŸ“Š Dataset Preparation

  • Organize images in data_sets/ directory
  • Each subdirectory represents a different organ class
  • Recommended image size: 256x256 pixels

🧠 Model Architecture

  • Convolutional layers for feature extraction
  • MaxPooling for dimensionality reduction
  • Dropout for preventing overfitting
  • Dense layers for classification

πŸš€ Training

  • Uses Adam optimizer
  • Categorical cross-entropy loss
  • 5 training epochs
  • Automatic train/validation/test split

πŸͺ„ Usage

Training the Model

# Run the main script to train the model
python organ_classification.py

Predicting with the Model

test_model('path/to/test_image.jpg')

πŸ“ˆ Performance Metrics

  • Training and validation loss tracked
  • Training and validation accuracy visualized
  • Final test set evaluation provided

πŸ’Ύ Model Saving

  • Trained model saved as organsClssify.h5
  • Can be loaded for future predictions

πŸ› οΈ Customization

  • Adjust hyperparameters in the script
  • Modify model architecture as needed

⚠️ Limitations

  • Requires diverse and well-labeled training data
  • Performance depends on image quality and dataset composition

πŸ“ˆ Future Improvements

  • Increase training epochs
  • Implement more advanced data augmentation
  • Experiment with deeper network architectures

🀝 Contributions

Contributions are welcome! Feel free to fork this repository, create a branch, and submit a pull request with your enhancements.


πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ“§ Contact

If you have any questions or suggestions, feel free to reach out via GitHub or email at [Ibrahim.Ibrahim051@eng-st.cu.edu.eg]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published