Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
42 commits
Select commit Hold shift + click to select a range
f61cc21
Created litellm client
kevinmessiaen Nov 5, 2024
e3844ff
Updated documentation
kevinmessiaen Nov 5, 2024
c524217
Added litellm embedding
kevinmessiaen Nov 5, 2024
d6b032f
Code improvement
kevinmessiaen Nov 5, 2024
e31cdfa
Added deprecated warnings
kevinmessiaen Nov 5, 2024
0f5ade7
Fixed typo
kevinmessiaen Nov 5, 2024
3045060
Improved documentation and llm setup
kevinmessiaen Nov 7, 2024
f49a2bc
Added back fastembed as default
kevinmessiaen Nov 7, 2024
1157bda
Removed todo: LiteLLM does not support embeddings for Gemini and Ollama
kevinmessiaen Nov 7, 2024
10e4113
Typo
kevinmessiaen Nov 7, 2024
5fb6a78
Fixed embeddings
kevinmessiaen Nov 7, 2024
f897262
Default model to gpt-4o
kevinmessiaen Nov 7, 2024
2657b19
Code cleanup
kevinmessiaen Nov 7, 2024
b04f126
Code cleanup
kevinmessiaen Nov 7, 2024
4633aa4
Skip LiteLLM tests with pydantic < 2
kevinmessiaen Nov 8, 2024
63ace19
Added test for custom client
kevinmessiaen Nov 8, 2024
1b382ee
Added test for embedding
kevinmessiaen Nov 8, 2024
713f0b0
Fixed tests
kevinmessiaen Nov 8, 2024
deca09a
Merge branch 'main' into feature/litellm
henchaves Nov 14, 2024
e54c414
Merge branch 'main' into feature/litellm
henchaves Nov 14, 2024
dee0e83
Reintroduced old way to set LLM models
kevinmessiaen Nov 15, 2024
7703d51
Reintroduced old way to set LLM models
kevinmessiaen Nov 15, 2024
5349fc2
Reintroduced old clients
kevinmessiaen Nov 15, 2024
6458f97
Merge branch 'main' into feature/litellm
kevinmessiaen Nov 15, 2024
2756e27
Fixed OpenAI embeddings
kevinmessiaen Nov 15, 2024
2b88ed3
Update Setting up the LLM client docs
henchaves Nov 15, 2024
1dc73d9
Update Setting up the LLM client docs pt 2
henchaves Nov 15, 2024
b39731e
Update testset generation docs
henchaves Nov 15, 2024
7eaf007
Update scan llm docs
henchaves Nov 15, 2024
5f51327
Merge branch 'main' into feature/litellm
henchaves Nov 18, 2024
39c4fa9
Removed response_format with ollama models due to issue in litellm
kevinmessiaen Nov 19, 2024
b09d266
Added dumb trim
kevinmessiaen Nov 19, 2024
911d6e5
Fixed output
kevinmessiaen Nov 19, 2024
40bede9
Add _parse_json_output to LiteLLM
henchaves Nov 19, 2024
77e6a4f
Added way to disable structured output
kevinmessiaen Nov 20, 2024
cab45a1
Fix test_litellm_client
henchaves Nov 21, 2024
5f39da1
Merge branch 'main' into feature/litellm
henchaves Nov 21, 2024
78dd03e
Check if format is json before calling _parse_json_output
henchaves Nov 21, 2024
82712c7
Set LITELLM_LOG as error level
henchaves Nov 21, 2024
a61e4b2
Add `disable_structured_output` to bedrock examples
henchaves Nov 21, 2024
3d33028
Format files
henchaves Nov 21, 2024
a571312
Fix sonar issues
henchaves Nov 21, 2024
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Improved documentation and llm setup
  • Loading branch information
kevinmessiaen committed Nov 7, 2024
commit 3045060d5aee3b86416c8f786174afbe3810bb5a
104 changes: 75 additions & 29 deletions docs/open_source/setting_up/index.md
Original file line number Diff line number Diff line change
@@ -1,16 +1,12 @@
# 🤖 Setting up the LLM Client

This guide focuses primarily on configuring and using various LLM clients supported to run Giskard's LLM-assisted functionalities. These clients include:
This guide focuses primarily on configuring and using various LLM clients supported to run Giskard's LLM-assisted functionalities. We are using [LiteLLM](https://github.com/BerriAI/litellm) to handle the model calls, you can see the list of supported models in the [LiteLLM documentation](https://docs.litellm.ai/docs/providers).

- OpenAI GPT models (such as GPT-3.5 and GPT-4)
- Azure OpenAI
- Mistral
- Ollama
- Any Custom Model
## OpenAI Client Setup

## OpenAI GPT-4 Client Setup
More information on [LiteLLM documentation](https://docs.litellm.ai/docs/providers/openai)

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/openai)
### Setup using .env variables

```python
import os
Expand All @@ -21,12 +17,26 @@ os.environ["OPENAI_API_KEY"] = "your-api-key"
# Optional, setup a model (default model is gpt-4)
giskard.llm.set_llm_model("gpt-4")
giskard.llm.set_embedding_model("text-embedding-ada-002")

# Optional Keys - OpenAI Organization, OpenAI API Base
os.environ["OPENAI_ORGANIZATION"] = "your-org-id"
os.environ["OPENAI_API_BASE"] = "openaiai-api-base"
```

### Setup using completion params

```python
import giskard

giskard.llm.set_llm_model("gpt-4", api_key="your-api-key")
giskard.llm.set_embedding_model("text-embedding-ada-002", api_key="your-api-key")
```

## Azure OpenAI Client Setup

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/azure)

### Setup using .env variables

```python
import os
Expand All @@ -35,6 +45,7 @@ import giskard
os.environ["AZURE_API_KEY"] = "" # "my-azure-api-key"
os.environ["AZURE_API_BASE"] = "" # "https://example-endpoint.openai.azure.com"
os.environ["AZURE_API_VERSION"] = "" # "2023-05-15"

giskard.llm.set_llm_model("azure/<your_deployment_name>")
giskard.llm.set_embedding_model("azure/<your_deployment_name>")

Expand All @@ -43,15 +54,33 @@ os.environ["AZURE_AD_TOKEN"] = ""
os.environ["AZURE_API_TYPE"] = ""
```

### Setup using completion params

```python
import giskard

# Using api_key, api_base, api_version
giskard.llm.set_llm_model("azure/<your_deployment_name>", api_base="", api_version="", api_key="")
giskard.llm.set_embedding_model("azure/<your_deployment_name>", api_base="", api_version="", api_key="")

# Using azure_ad_token, api_base, api_version
giskard.llm.set_llm_model("azure/<your_deployment_name>", api_base="", api_version="", azure_ad_token="")
giskard.llm.set_embedding_model("azure/<your_deployment_name>", api_base="", api_version="", azure_ad_token="")
```


## Mistral Client Setup

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/mistral)

### Setup using .env variables

```python
import os
import giskard

os.environ['MISTRAL_API_KEY'] = ""

giskard.llm.set_llm_model("mistral/mistral-tiny")
giskard.llm.set_embedding_model("mistral/mistral-embed")

Expand All @@ -61,27 +90,29 @@ giskard.llm.set_embedding_model("mistral/mistral-embed")

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/ollama)

### Setup using completion params

```python
import litellm
import giskard

giskard.llm.set_llm_model("ollama/llama2") # See supported models here: https://docs.litellm.ai/docs/providers/ollama#ollama-models
litellm.api_base = "http://localhost:11434"

giskard.llm.set_llm_model("ollama/llama2", api_base="http://localhost:11434") # See supported models here: https://docs.litellm.ai/docs/providers/ollama#ollama-models
# TODO: embedding
```

## AWS Bedrock Client Setup

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/bedrock)

### Setup using .env variables

```python
import os
import giskard

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""

giskard.llm.set_llm_model("bedrock/anthropic.claude-3-sonnet-20240229-v1:0")
giskard.llm.set_embedding_model("bedrock/amazon.titan-embed-text-v1")
```
Expand All @@ -90,6 +121,8 @@ giskard.llm.set_embedding_model("bedrock/amazon.titan-embed-text-v1")

More information on [litellm documentation](https://docs.litellm.ai/docs/providers/gemini)

### Setup using .env variables

```python
import os
import giskard
Expand All @@ -105,34 +138,47 @@ giskard.llm.set_llm_model("gemini/gemini-pro")
More information on [litellm documentation](https://docs.litellm.ai/docs/providers/custom_llm_server )

```python
import requests
import giskard
import litellm
from litellm import CustomLLM, completion, get_llm_provider
import os
from typing import Optional


class MyCustomLLM(CustomLLM):
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
)
class MyCustomLLM(litellm.CustomLLM):
def completion(self, messages: str, api_key: Optional[str] = None, **kwargs) -> litellm.ModelResponse:
api_key = api_key or os.environ.get('MY_SECRET_KEY')
if api_key is None:
raise litellm.AuthenticationError("Api key is not provided")

response = requests.post('https://www.my-fake-llm.ai/chat/completion', json={
'messages': messages
}, headers={'Authorization': api_key})

return litellm.ModelResponse(**response.json())

def embedding(self, inputs, api_key: Optional[str] = None, **kwargs) -> litellm.EmbeddingResponse:
api_key = api_key or os.environ.get('MY_SECRET_KEY')
if api_key is None:
raise litellm.AuthenticationError("Api key is not provided")

response = requests.post('https://www.my-fake-llm.ai/embeddings', json={
'inputs': inputs
}, headers={'Authorization': api_key})

return litellm.EmbeddingResponse(**response.json())

def embedding(self, *args, **kwargs) -> litellm.EmbeddingResponse:
return litellm.embedding(
model="openai/text-embedding-ada-002",
input=["Hello world"]

)

my_custom_llm = MyCustomLLM()

litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
]

giskard.llm.set_llm_model("my-custom-llm/my-fake-llm-model")
giskard.llm.set_embedding_model("my-custom-llm/my-fake-embedding-model")
api_key = os.environ['MY_SECRET_KEY']

giskard.llm.set_llm_model("my-custom-llm/my-fake-llm-model", api_key=api_key)
giskard.llm.set_embedding_model("my-custom-llm/my-fake-embedding-model", api_key=api_key)


```
Expand Down
14 changes: 9 additions & 5 deletions giskard/llm/client/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,10 @@

_default_client = None
_default_llm_api: Optional[str] = None

_default_llm_model = os.getenv("GSK_LLM_MODEL", "gpt-4")
_default_completion_params = dict()

_default_llm_base_url = os.getenv("GSK_LLM_BASE_URL", None)


Expand All @@ -21,9 +24,6 @@ def set_default_client(client: LLMClient):
_default_client = client


@deprecated(
"_unset_default_client is deprecated, check documentation to setup llm: https://docs.giskard.ai/en/latest/open_source/setting_up/index.html"
)
def _unset_default_client():
global _default_client
_default_client = None
Expand Down Expand Up @@ -52,9 +52,13 @@ def set_llm_base_url(llm_base_url: Optional[str]):
_unset_default_client()


def set_llm_model(llm_model: str):
def set_llm_model(llm_model: str, **kwargs):
global _default_llm_model
global _default_completion_params

_default_llm_model = llm_model
_default_completion_params = kwargs

# If the model is set, we unset the default client
_unset_default_client()

Expand Down Expand Up @@ -84,7 +88,7 @@ def get_default_client() -> LLMClient:
try:
from .litellm import LiteLLMClient

_default_client = LiteLLMClient(_default_llm_model)
_default_client = LiteLLMClient(_default_llm_model, _default_completion_params)
except ImportError:
raise ValueError(f"LLM scan using {_default_llm_model} requires litellm")

Expand Down
15 changes: 13 additions & 2 deletions giskard/llm/client/litellm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Optional, Sequence
from typing import Any, Dict, Optional, Sequence

from ...client.python_utils import warning
from ..errors import LLMImportError
Expand All @@ -23,8 +23,18 @@ def _get_response_format(format):


class LiteLLMClient(LLMClient):
def __init__(self, model: str = "gpt-4o"):
def __init__(self, model: str = "gpt-4o", completion_params: Optional[Dict[str, Any]] = None):
"""Initialize a LiteLLM completion client

Parameters
----------
model : str
The name of the language model to use for text completion. see all supported LLMs: https://docs.litellm.ai/docs/providers/
completion_params : dict, optional
A dictionary containing params for the completion.
"""
self.model = model
self.completion_params = completion_params or dict()

def _build_supported_completion_params(self, **kwargs):
supported_params = litellm.get_supported_openai_params(model=self.model)
Expand All @@ -46,6 +56,7 @@ def complete(
**self._build_supported_completion_params(
temperature=temperature, max_tokens=max_tokens, seed=seed, response_format=_get_response_format(format)
),
**self.completion_params,
)

self.logger.log_call(
Expand Down
13 changes: 10 additions & 3 deletions giskard/llm/embeddings/__init__.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,20 @@
from typing import Optional
from typing_extensions import deprecated

from ..client.litellm import LiteLLMClient
from .base import BaseEmbedding
from .litellm import LiteLLMEmbedding

_default_embedding = None

_default_embedding_model = "text-embedding-ada-002"
_default_embedding_params = dict()


def get_embedding_model() -> str:
return _default_embedding_model


def set_embedding_model(model: str):
def set_embedding_model(model: str, **kwargs):
"""
Set the default embedding model to be used with litellm.

Expand All @@ -22,7 +24,10 @@ def set_embedding_model(model: str):
Model name (e.g. 'text-embedding-ada-002' or 'text-embedding-3-large').
"""
global _default_embedding_model
global _default_embedding_params

_default_embedding_model = model
_default_embedding_params = kwargs


def get_default_embedding():
Expand All @@ -34,7 +39,9 @@ def get_default_embedding():
"""
global _default_embedding

_default_embedding = _default_embedding or LiteLLMClient(model=get_embedding_model())
_default_embedding = _default_embedding or LiteLLMEmbedding(
model=get_embedding_model(), embedding_params=_default_embedding_params
)

return _default_embedding

Expand Down
12 changes: 8 additions & 4 deletions giskard/llm/embeddings/litellm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Sequence
from typing import Any, Dict, Optional, Sequence

import numpy as np

Expand All @@ -13,16 +13,20 @@


class LiteLLMEmbedding(BaseEmbedding):
def __init__(self, model: str, batch_size=40):
"""
def __init__(self, model: str, embedding_params: Optional[Dict[str, Any]] = None, batch_size=40):
"""Initialize a LiteLLM embedding client

Parameters
----------
model : str
Model name.
embedding_params : dict, optional)
A dictionary containing params for the completion.
batch_size : int, optional
Batch size for embeddings, by default 40.
"""
self.model = model
self.embedding_params = embedding_params or dict()
self.batch_size = batch_size

def embed(self, texts: Sequence[str]) -> np.ndarray:
Expand All @@ -31,7 +35,7 @@ def embed(self, texts: Sequence[str]) -> np.ndarray:

embeddings = []
for batch in batched(texts, self.batch_size):
response = litellm.embedding(model=self.model, input=batch)
response = litellm.embedding(model=self.model, input=batch, **self.embedding_params)
embeddings.extend([item.embedding for item in response.data])

return np.array(embeddings)
Loading