Skip to content

ArchAngelAries/TagScribeR

Repository files navigation

TagScribeR v2.1

TagScribeR v2 is a modern, GPU-accelerated local image captioning and dataset management suite. Rebuilt from the ground up using PySide6 and powered by Qwen 3-VL (Vision-Language) models(with optional API support), it offers a "Studio" workflow for preparing AI training datasets.

Logo 1 2 Screenshot 2025-12-19 123602 3 4 5 6

✨ Key Features

  • πŸ–ΌοΈ Gallery Studio: Multi-select visual grid, instant tagging, and batch caption editing.
  • πŸ€– Qwen 3-VL Captioning: State-of-the-art vision model integration.
    • GPU Accelerated: Supports NVIDIA (CUDA) and AMD (ROCm) on Windows.
    • Real-time Preview: Watch captions appear as they generate.
    • Custom Prompts: Use templates or natural language (e.g., "Describe the lighting in detail").
    • API Mode: Connect to LM Studio, Ollama, or other API services to use other desired models or offload processing to another machine or the cloud.
  • ✏️ Batch Editor: Resize, Crop (with focus points), Rotate, and Convert formats in bulk.
  • πŸ“‚ Dataset Manager: Create, sort, filter, and organize image collections without duplicating files manually.
  • ℹ️ Metadata Editor: View and edit EXIF data, specifically targeting Stable Diffusion generation parameters.

πŸš€ Installation

1. Prerequisites

  • Python 3.10 or 3.11 installed.
  • Git installed.

2. Setup

Clone the repository and run the installer:

git clone https://github.com/ArchAngelAries/TagScribeR.git
cd TagScribeR
install.bat

The installer will automatically detect your hardware:

  • NVIDIA RTX 20/30/40: Installs Stable CUDA 12.4.
  • NVIDIA RTX 50 (Blackwell): Installs Nightly CUDA 12.8 (cu128).
  • AMD Radeon: Scans for your architecture (RX 7000, RX 9000, Strix Halo) and installs the correct ROCm Nightly build.

πŸ”΄ Manual Install (Troubleshooting)

If the auto-installer fails or you need a specific version, activate the venv (.\venv\Scripts\activate) and run the command for your hardware:

NVIDIA

Standard (RTX 30/40):

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

Bleeding Edge (RTX 50 Series):

pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128

AMD ROCm (Windows)

Find your architecture below. You must run both commands (SDK + Torch).

RX 7000 Series / 780M (gfx110X):

pip install --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/ "rocm[libraries,devel]"
pip install --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/ --pre torch torchvision torchaudio

RX 9000 Series (gfx120X):

pip install --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/ "rocm[libraries,devel]"
pip install --index-url https://rocm.nightlies.amd.com/v2/gfx120X-all/ --pre torch torchvision torchaudio

Strix Halo (gfx1151):

pip install --index-url https://rocm.nightlies.amd.com/v2/gfx1151/ "rocm[libraries,devel]"
pip install --index-url https://rocm.nightlies.amd.com/v2/gfx1151/ --pre torch torchvision torchaudio

Workstation MI300 (gfx94X):

pip install --index-url https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/ "rocm[libraries,devel]"
pip install --index-url https://rocm.nightlies.amd.com/v2/gfx94X-dcgpu/ --pre torch torchvision torchaudio

⚠️ Important: Do not run pip install torch afterwards, or it will overwrite the AMD version with the generic CPU version.

🐧 Linux Users

TagScribeR works natively on Linux with full GPU acceleration.

  1. Run the install script:
    chmod +x install.sh
    ./install.sh
  2. If the app fails to launch, you may need the Qt XCB library:
    sudo apt-get install libxcb-cursor0
  3. Launch:
    source venv/bin/activate
    python main.py

πŸ”΄ Troubleshooting (RTX 5090)

If you have an RTX 5090 and get an error saying RuntimeError: operator torchvision::nms does not exist or no kernel image available:

This means the PyTorch Nightly server has mismatched versions (a common issue on the bleeding edge).

The Fix (Manual Transplant):

  1. If you have Fluxgym, Kohya_SS, or OneTrainer running successfully on your machine, go to that application's venv\Lib\site-packages folder.
  2. Copy the folders torch, torchvision, and torchaudio.
  3. Paste them into TagScribeR\venv\Lib\site-packages, overwriting files.
  4. Run this in the TagScribeR terminal to fix dependencies:
    .\venv\Scripts\activate
    pip install torchgen sympy networkx jinja2 fsspec pyyaml

πŸ› οΈ Usage Guide

1. Auto Captioning (Qwen)

  1. Go to the Auto Caption tab.
  2. Download a Model: Select a preset (e.g., Qwen 2.5-VL-3B) and click Download.
  3. Load Images: Open a folder containing your dataset.
  4. Select Images: Click individual images or "Select All".
  5. Run: Click "πŸš€ Caption Selected".

2. Dataset Management

  1. Go to the Datasets tab.
  2. Create Collection: Click "New" to create a named folder in Dataset Collections.
  3. Filter Source: Load a source folder and type tags (e.g., 1girl, outdoors) to find specific images.
  4. Add: Select the images and click "βž• Add Selected to Collection". This copies the images and their text files safely.

3. Settings

  • Themes: Choose from various Material Design themes (Dark Teal, Dark Amber, Light Blue, etc.).
  • Defaults: Set your preferred AI temperature and token limits.

🀝 Credits & License

Created by ArchAngelAries. Code Assisted by Google's Gemini Pro 3.