Skip to content

Anush008/fastembed-rs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Rust library for generating vector embeddings, reranking locally!

Crates.io MIT Licensed Semantic release

Features

Not looking for Rust?

Models

Text Embedding

Quantized versions are also available for several models above (append Q to the model enum variant, e.g., EmbeddingModel::BGESmallENV15Q).

Sparse Text Embedding

Image Embedding

Reranking

✊ Support

To support the library, please donate to our primary upstream dependency, ort - The Rust wrapper for the ONNX runtime.

Installation

Run the following in your project directory:

cargo add fastembed

Or add the following line to your Cargo.toml:

[dependencies]
fastembed = "5"

Usage

Text Embeddings

use fastembed::{TextEmbedding, InitOptions, EmbeddingModel};

// With default options
let mut model = TextEmbedding::try_new(Default::default())?;

// With custom options
let mut model = TextEmbedding::try_new(
    InitOptions::new(EmbeddingModel::AllMiniLML6V2).with_show_download_progress(true),
)?;

let documents = vec![
    "passage: Hello, World!",
    "query: Hello, World!",
    "passage: This is an example passage.",
    // You can leave out the prefix but it's recommended
    "fastembed-rs is licensed under Apache  2.0"
];

 // Generate embeddings with the default batch size, 256
 let embeddings = model.embed(documents, None)?;

 println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 4
 println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 384

Sparse Text Embeddings

use fastembed::{SparseEmbedding, SparseInitOptions, SparseModel, SparseTextEmbedding};

// With default options
let mut model = SparseTextEmbedding::try_new(Default::default())?;

// With custom options
let mut model = SparseTextEmbedding::try_new(
    SparseInitOptions::new(SparseModel::SPLADEPPV1).with_show_download_progress(true),
)?;

let documents = vec![
    "passage: Hello, World!",
    "query: Hello, World!",
    "passage: This is an example passage.",
    "fastembed-rs is licensed under Apache  2.0"
];

// Generate embeddings with the default batch size, 256
let embeddings: Vec<SparseEmbedding> = model.embed(documents, None)?;

Image Embeddings

use fastembed::{ImageEmbedding, ImageInitOptions, ImageEmbeddingModel};

// With default options
let mut model = ImageEmbedding::try_new(Default::default())?;

// With custom options
let mut model = ImageEmbedding::try_new(
    ImageInitOptions::new(ImageEmbeddingModel::ClipVitB32).with_show_download_progress(true),
)?;

let images = vec!["assets/image_0.png", "assets/image_1.png"];

// Generate embeddings with the default batch size, 256
let embeddings = model.embed(images, None)?;

println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 2
println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 512

Candidates Reranking

use fastembed::{TextRerank, RerankInitOptions, RerankerModel};

// With default options
let mut model = TextRerank::try_new(Default::default())?;

// With custom options
let mut model = TextRerank::try_new(
    RerankInitOptions::new(RerankerModel::BGERerankerBase).with_show_download_progress(true),
)?;

let documents = vec![
    "hi",
    "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear, is a bear species endemic to China.",
    "panda is animal",
    "i dont know",
    "kind of mammal",
];

// Rerank with the default batch size, 256 and return document contents
let results = model.rerank("what is panda?", documents, true, None)?;
println!("Rerank result: {:?}", results);

Alternatively, local model files can be used for inference via the try_new_from_user_defined(...) methods of respective structs.

LICENSE

Apache 2.0

About

Rust library for generating vector embeddings, reranking. Re-write of qdrant/fastembed.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 38

Languages