Skip to content

AMindCoder/generative_ai_training

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative AI Training Course

Welcome to our comprehensive Generative AI training course! This repository contains structured learning materials, hands-on labs, and resources to help you master Generative AI concepts and tools.

Course Overview

This course is designed with a 50-50 split between theory and practical hands-on labs, ensuring you gain both deep understanding and practical experience with Generative AI technologies.

Available Modules

  1. Introduction to Generative AI & Tools

    • Understanding fundamental concepts of Generative AI
    • Exploring key tools and frameworks
    • Hands-on experience with OpenAI API and Hugging Face
  2. Mastering Prompt Engineering

    • Advanced prompting techniques
    • Domain-specific prompt engineering
    • Building practical applications with LangChain

Prerequisites

  • Basic Python programming knowledge
  • Familiarity with Jupyter notebooks
  • GitHub account for accessing Codespaces
  • Google account for Colab notebooks

Getting Started

Using GitHub Codespaces

  1. Click the "Code" button above
  2. Select "Open with Codespaces"
  3. Click "New codespace"
  4. Wait for the environment to be configured automatically

Local Setup

  1. Clone the repository:
git clone https://github.com/yourusername/generative-ai-training.git
  1. Install dependencies:
pip install -r requirements.txt

Repository Structure

generative-ai-training/
├── module1/
│   ├── theory.md
│   └── labs/
│       ├── lab1_environment_setup.ipynb
│       ├── lab2_openai_basics.ipynb
│       └── lab3_huggingface_exploration.ipynb
├── module2/
│   ├── theory.md
│   └── labs/
│       ├── lab1_qa_bot.ipynb
│       ├── lab2_code_generator.ipynb
│       └── lab3_langchain_basics.ipynb
└── requirements.txt

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published