Skip to content

Agent Indoctrination – AI Safety, Bias, Fairness, Ethics & Compliance Testing Framework πŸš€

License

Notifications You must be signed in to change notification settings

16246541-corp/indoctrine.ai

Repository files navigation

indoctrine.ai

The Gold Standard for AI Testing: Ethical, Fair, and Compliant

PyPI version Python 3.9+ License: MIT Tests

Open-source AI testing framework for comprehensive security, bias detection, compliance, and ethical AI evaluation. Production-ready testing for LLMs and AI agents.


What Does indoctrine.ai Test?

πŸ” AI Security & Robustness

Detect vulnerabilities before attackers do.

  • Prompt injection attacks - Block instruction override attempts
  • Jailbreak detection - Prevent safety guideline bypasses
  • Adaptive red-teaming - AI-powered dynamic attack generation
  • Multi-modal security - Test image injection and visual jailbreaks
  • Tool use safety - Validate agent tool-calling security
  • Token smuggling - Detect encoding-based attacks

β†’ See Attack Engine Documentation

βœ… AI Truthfulness & Accuracy

Eliminate hallucinations and ensure factual accuracy.

  • Hallucination detection - Identify fabricated information
  • Groundedness checking - Verify claims match source material
  • RAG system evaluation - Full RAG Triad (Context, Groundedness, Answer Relevance)
  • Consistency testing - Ensure reliable responses
  • Semantic similarity - Real embedding-based analysis

β†’ See Truth Engine Documentation

βš–οΈ AI Compliance & Governance

Meet regulatory requirements automatically.

  • EU AI Act compliance - Articles 9-15 & 52 coverage
  • GDPR compliance - Data privacy and protection
  • NIST AI RMF - Risk management framework
  • SOC 2 & ISO 42001 - Enterprise standards
  • Auto-generated guardrails - Export NeMo Guardrails configs
  • Custom policy engine - Enforce company-specific rules

β†’ See Governance Engine Documentation

βš–οΈ AI Fairness & Bias Detection

Eliminate algorithmic discrimination with research-backed metrics.

  • 15 fairness metrics - Demographic parity, equalized odds, disparate impact
  • Standard benchmarks - Adult, COMPAS, German Credit datasets
  • LLM-native testing - Auto-generate demographic variants
  • Interpretability layer - Plain-English bias explanations
  • Legal compliance - EEOC 80% rule validation
  • Hiring & lending testing - Domain-specific thresholds

β†’ See Fairness Engine Documentation

🌍 AI Ethics & Cultural Equity

Test for cultural bias and value alignment.

  • Decolonization score - 5-dimensional cultural bias testing
    • Epistemic bias (knowledge systems)
    • Linguistic bias (communication styles)
    • Historical bias (narrative perspectives)
    • Cultural bias (norm assumptions)
    • Stereotyping (representation quality)
  • Political bias detection - Measure ideological skew
  • Values alignment - Human rights, ethics, inclusivity

β†’ See Values Engine Documentation


How Does indoctrine.ai Test?

πŸ€– LLM-as-a-Judge Evaluation

Sophisticated AI-powered testing, not brittle keyword matching.

  • Uses GPT-4, Claude, or local LLMs (Ollama, LM Studio) as evaluators
  • Contextual understanding of refusals vs. compliance
  • Nuanced detection of hallucinations and policy violations
  • Supports OpenAI, Anthropic, or fully offline local models
evaluator:
  provider: "openai"
  model: "gpt-4o"
  api_key: "${OPENAI_API_KEY}"

βš”οΈ Adaptive Red-Teaming

Dynamic attacks that evolve based on your agent's responses.

  • Attacker Agent observes target responses
  • Generates new exploits targeting discovered weaknesses
  • Multi-turn interrogation vs. static attack datasets
  • Powered by GPT-4, Claude, or local LLMs

πŸ“Š Objective Fairness Metrics

Research-backed algorithmic fairness testing.

  • 15 peer-reviewed fairness metrics
  • Formal mathematical definitions
  • Industry-standard benchmarks (Adult, COMPAS, German Credit)
  • Interpretability layer with plain-English explanations

🎯 Multi-Modal Testing

Test both text and vision-language models.

  • Image injection attacks
  • QR code exploits
  • Steganography detection
  • Visual jailbreak testing

🌈 Beautiful UX

AI testing that doesn't feel like a chore.

  • Nyan Progress Display - Rainbow-trailing progress animations
  • Nyan Alignment Score - Unified 0-100 ethical metric
  • Automated PDF/JSON/Markdown reports
  • 3D embedding visualizations

Why indoctrine.ai?

✨ Key Differentiators

Feature indoctrine.ai Alternatives
Open Source βœ… MIT License ❌ Proprietary
Privacy-First βœ… Runs locally ❌ Cloud-only
Comprehensive βœ… 5-layer testing ⚠️ Partial coverage
Production-Ready βœ… CI/CD integration ⚠️ Research tools
Research-Backed βœ… 15 fairness metrics ⚠️ Ad-hoc metrics
Cultural Equity βœ… Decolonization testing ❌ Not available
Auto-Remediation βœ… Guardrail export ❌ Detection only

Quick Start

Installation

pip install indoctrine-ai

Your First Test (5 Lines)

from agent_indoctrination import Indoctrinator

indo = Indoctrinator("config.yaml")
results = indo.run_full_suite(my_agent)
indo.generate_report(results, "report.pdf")
print(f"Nyan Alignment Score: {results['overall_score']}/100")

Output:

🌈 [β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ] 100% Complete
βœ… Security: 92/100 | βœ… Accuracy: 88/100 | βœ… Compliance: 95/100
Nyan Alignment Score: 91/100

β†’ Get Started in 5 Minutes


Who Uses indoctrine.ai?

Use Cases

Industry What We Test Why It Matters
AI/ML Teams Security, hallucinations, consistency Catch bugs before production
Compliance Officers EU AI Act, GDPR, SOC 2 Automated regulatory audits
Red Teams Adversarial attacks, jailbreaks Identify security vulnerabilities
HR/Hiring Fairness metrics, bias detection Avoid discrimination lawsuits
Finance/Lending Disparate impact, EEOC compliance Fair lending requirements
Healthcare HIPAA, bias, hallucinations Patient safety & equity
Enterprise AI Governance, security, fairness Comprehensive AI risk management

Documentation

πŸ“š Complete Guides

🎯 Quick Links


Features at a Glance

Core Capabilities

βœ… Prompt injection & jailbreak detection
βœ… Adaptive AI-powered red-teaming
βœ… Multi-modal security testing (images, QR codes)
βœ… Hallucination & groundedness checking
βœ… RAG Triad evaluation (Context, Groundedness, Answer Relevance)
βœ… EU AI Act, GDPR, NIST AI RMF compliance
βœ… 15 objective fairness metrics
βœ… Decolonization testing (5 cultural dimensions)
βœ… Auto-generated guardrails (NeMo)
βœ… LLM-as-a-Judge evaluation
βœ… OpenAI, Anthropic, Ollama, LM Studio support
βœ… CI/CD integration (GitHub Actions, GitLab)
βœ… PDF/JSON/Markdown reports
βœ… Nyan Progress Display 🌈


Configuration Example

# config.yaml - Works with OpenAI, Anthropic, or local LLMs
evaluator:
  provider: "openai"
  model: "gpt-4o"
  api_key: "${OPENAI_API_KEY}"

# Or use local LLMs (free, offline)
evaluator:
  provider: "openai"
  endpoint: "http://localhost:11434/v1"
  model: "llama3"
  api_key: "ollama"

# Enable testing engines
attack:
  enabled: true
  adaptive: true  # AI-powered attacks
  
truth:
  enabled: true
  enable_rag_triad: true
  
governance:
  enabled: true
  frameworks:
    - eu_ai_act
    - gdpr
    
fairness:
  enabled: true
  use_case: "hiring"  # EEOC thresholds

values:
  enabled: true

β†’ Full Configuration Guide


CI/CD Integration

# .github/workflows/ai-testing.yml
name: AI Safety Testing
on: [pull_request]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - run: pip install indoctrine-ai
      - name: Run AI tests
        env:
          OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
        run: indoctrinate run --config config.yaml --agent my_agent.py
      - name: Check thresholds
        run: indoctrinate validate --results results.json --fail-on-critical

β†’ CI/CD Examples


Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Community

  • πŸ› Report bugs - GitHub Issues
  • πŸ’‘ Suggest features - Discussions
  • πŸ”€ Submit PRs - Follow the dev branch workflow
  • ⭐ Star the repo - Help us reach more AI developers!

License

MIT License - see LICENSE for details.


Support


Built for safer, fairer, and more compliant AI 🌈

About

Agent Indoctrination – AI Safety, Bias, Fairness, Ethics & Compliance Testing Framework πŸš€

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages