Namespaces
Variants
Views
Actions

Standard library header <memory>

From cppreference.com
< cpp‎ | header
 
 
Standard library headers
 

This header is part of the dynamic memory management library.

Contents

Includes

(C++20)
Three-way comparison operator support[edit]

Classes

Pointer traits
provides information about pointer-like types
(class template) [edit]
Garbage collector support
(C++11)(removed in C++23)
lists pointer safety models
(enum) [edit]
Allocators
the default allocator
(class template) [edit]
provides information about allocator types
(class template) [edit]
records the address and the actual size of storage allocated by allocate_at_least
(class template) [edit]
checks if the specified type supports uses-allocator construction
(class template) [edit]
Uninitialized storage
(deprecated in C++17)(removed in C++20)
an iterator that allows standard algorithms to store results in uninitialized memory
(class template) [edit]
Smart pointers
smart pointer with unique object ownership semantics
(class template) [edit]
smart pointer with shared object ownership semantics
(class template) [edit]
(C++11)
weak reference to an object managed by std::shared_ptr
(class template) [edit]
(deprecated in C++11)(removed in C++17)
smart pointer with strict object ownership semantics
(class template) [edit]
Smart pointer adaptors
(C++23)
interoperates with foreign pointer setters and resets a smart pointer on destruction
(class template) [edit]
interoperates with foreign pointer setters, obtains the initial pointer value from a smart pointer, and resets it on destruction
(class template) [edit]
Types for composite class design
(C++26)
a wrapper containing dynamically-allocated object with value-like semantics
(class template) [edit]
a polymorphic wrapper containing dynamically-allocated object with value-like semantics
(class template) [edit]
Helper classes
atomic shared pointer
(class template specialization) [edit]
atomic weak pointer
(class template specialization) [edit]
provides mixed-type owner-based ordering of shared and weak pointers
(class template) [edit]
provides owner-based hashing for shared and weak pointers
(class) [edit]
provides mixed-type owner-based equal comparisons of shared and weak pointers
(class) [edit]
allows an object to create a shared_ptr referring to itself
(class template) [edit]
exception thrown when accessing a weak_ptr which refers to already destroyed object
(class) [edit]
default deleter for unique_ptr
(class template) [edit]
hash support for std::unique_ptr
(class template specialization) [edit]
hash support for std::shared_ptr
(class template specialization) [edit]
hash support for std::indirect
(class template specialization) [edit]
Forward declarations
Defined in header <functional>
(C++11)
hash function object
(class template) [edit]
Defined in header <atomic>
(C++11)
atomic class template and specializations for bool, integral, floating-point,(since C++20) and pointer types
(class template) [edit]

Tags

a tag used to select allocator-aware constructors
(tag)[edit]

Functions

Uses-allocator construction
prepares the argument list matching the flavor of uses-allocator construction required by the given type
(function template) [edit]
creates an object of the given type by means of uses-allocator construction
(function template) [edit]
creates an object of the given type at specified memory location by means of uses-allocator construction
(function template) [edit]
Miscellaneous
obtains a raw pointer from a pointer-like type
(function template) [edit]
(C++11)
obtains actual address of an object, even if the & operator is overloaded
(function template) [edit]
(C++11)
aligns a pointer in a buffer
(function) [edit]
informs the compiler that a pointer is aligned
(function template) [edit]
checks whether the pointer points to an object whose alignment has at least the given value
(function template) [edit]
Explicit lifetime management
implicitly creates objects in given storage with the object representation reused
(function template) [edit]
Garbage collector support
(C++11)(removed in C++23)
declares that an object can not be recycled
(function) [edit]
(C++11)(removed in C++23)
declares that an object can be recycled
(function template) [edit]
(C++11)(removed in C++23)
declares that a memory area does not contain traceable pointers
(function) [edit]
(C++11)(removed in C++23)
cancels the effect of std::declare_no_pointers
(function) [edit]
(C++11)(removed in C++23)
returns the current pointer safety model
(function) [edit]
Uninitialized storage
copies a range of objects to an uninitialized area of memory
(function template) [edit]
copies a number of objects to an uninitialized area of memory
(function template) [edit]
copies an object to an uninitialized area of memory, defined by a range
(function template) [edit]
copies an object to an uninitialized area of memory, defined by a start and a count
(function template) [edit]
moves a range of objects to an uninitialized area of memory
(function template) [edit]
moves a number of objects to an uninitialized area of memory
(function template) [edit]
constructs objects by default-initialization in an uninitialized area of memory, defined by a range
(function template) [edit]
constructs objects by default-initialization in an uninitialized area of memory, defined by a start and a count
(function template) [edit]
constructs objects by value-initialization in an uninitialized area of memory, defined by a range
(function template) [edit]
constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count
(function template) [edit]
creates an object at a given address
(function template) [edit]
destroys an object at a given address
(function template) [edit]
(C++17)
destroys a range of objects
(function template) [edit]
(C++17)
destroys a number of objects in a range
(function template) [edit]
(deprecated in C++17)(removed in C++20)
obtains uninitialized storage
(function template) [edit]
(deprecated in C++17)(removed in C++20)
frees uninitialized storage
(function template) [edit]
Smart pointer non-member operations
creates a unique pointer that manages a new object
(function template) [edit]
compares to another unique_ptr or with nullptr
(function template) [edit]
creates a shared pointer that manages a new object
(function template) [edit]
creates a shared pointer that manages a new object allocated using an allocator
(function template) [edit]
applies static_cast, dynamic_cast, const_cast, or reinterpret_cast to the stored pointer
(function template) [edit]
returns the deleter of specified type, if owned
(function template) [edit]
(removed in C++20)(removed in C++20)(removed in C++20)(removed in C++20)(removed in C++20)(C++20)
compares with another shared_ptr or with nullptr
(function template) [edit]
outputs the value of the stored pointer to an output stream
(function template) [edit]
outputs the value of the managed pointer to an output stream
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
specializes the std::swap algorithm
(function template) [edit]
Smart pointer adaptor creation
(C++23)
creates an out_ptr_t with an associated smart pointer and resetting arguments
(function template) [edit]
(C++23)
creates an inout_ptr_t with an associated smart pointer and resetting arguments
(function template) [edit]
specializes atomic operations for std::shared_ptr
(function template) [edit]

Function-like entities

Defined in namespace std::ranges
Uninitialized storage
copies a range of objects to an uninitialized area of memory
(algorithm function object)[edit]
copies a number of objects to an uninitialized area of memory
(algorithm function object)[edit]
copies an object to an uninitialized area of memory, defined by a range
(algorithm function object)[edit]
copies an object to an uninitialized area of memory, defined by a start and a count
(algorithm function object)[edit]
moves a range of objects to an uninitialized area of memory
(algorithm function object)[edit]
moves a number of objects to an uninitialized area of memory
(algorithm function object)[edit]
constructs objects by default-initialization in an uninitialized area of memory, defined by a range
(algorithm function object)[edit]
constructs objects by default-initialization in an uninitialized area of memory, defined by a start and count
(algorithm function object)[edit]
constructs objects by value-initialization in an uninitialized area of memory, defined by a range
(algorithm function object)[edit]
constructs objects by value-initialization in an uninitialized area of memory, defined by a start and a count
(algorithm function object)[edit]
creates an object at a given address
(algorithm function object)[edit]
destroys an object at a given address
(algorithm function object)[edit]
destroys a range of objects
(algorithm function object)[edit]
destroys a number of objects in a range
(algorithm function object)[edit]

[edit] Synopsis

#include <compare>
 
namespace std {
  // pointer Traits
  template<class Ptr>
  struct pointer_traits; // freestanding
  template<class T>
  struct pointer_traits<T*>; // freestanding
 
  // pointer conversion
  template<class T>
  constexpr T* to_address(T* p) noexcept; // freestanding
  template<class Ptr>
  constexpr auto to_address(const Ptr& p) noexcept; // freestanding
 
  // pointer alignment
  void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // freestanding
  template<size_t N, class T>
  constexpr T* assume_aligned(T* ptr); // freestanding
  template<size_t Alignment, class T>
  bool is_sufficiently_aligned(T* ptr);
 
  // explicit lifetime management
  template<class T>
  T* start_lifetime_as(void* p) noexcept; // freestanding
  template<class T>
  const T* start_lifetime_as(const void* p) noexcept; // freestanding
  template<class T>
  volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding
  template<class T>
  const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding
  template<class T>
  T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding
  template<class T>
  const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding
  template<class T>
  volatile T* start_lifetime_as_array(volatile void* p,
                                      size_t n) noexcept; // freestanding
  template<class T>
  const volatile T* start_lifetime_as_array(const volatile void* p, // freestanding
                                            size_t n) noexcept;
  template<class T>
  T* trivially_relocate(T* first, T* last, T* result); // freestanding
  template<class T>
  constexpr T* relocate(T* first, T* last, T* result); // freestanding
 
  // allocator argument tag
  struct allocator_arg_t
  {
    explicit allocator_arg_t() = default;
  };                                                // freestanding
  inline constexpr allocator_arg_t allocator_arg{}; // freestanding
 
  // uses_allocator
  template<class T, class Alloc>
  struct uses_allocator; // freestanding
 
  // uses_allocator
  template<class T, class Alloc>
  constexpr bool uses_allocator_v = uses_allocator<T, Alloc>::value; // freestanding
 
  // uses-allocator construction
  template<class T, class Alloc, class... Args>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  Args&&... args) noexcept;
  template<class T, class Alloc, class Tuple1, class Tuple2>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  piecewise_construct_t,
                                                  Tuple1&& x,
                                                  Tuple2&& y) noexcept;
  template<class T, class Alloc>
  constexpr auto uses_allocator_construction_args(
    const Alloc& alloc) noexcept; // freestanding
  template<class T, class Alloc, class U, class V>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  U&& u,
                                                  V&& v) noexcept;
  template<class T, class Alloc, class U, class V>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  pair<U, V>& pr) noexcept;
  template<class T, class Alloc, class U, class V>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  const pair<U, V>& pr) noexcept;
  template<class T, class Alloc, class U, class V>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  pair<U, V>&& pr) noexcept;
  template<class T, class Alloc, class U, class V>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  const pair<U, V>&& pr) noexcept;
  template<class T, class Alloc, /*pair-like*/ P>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  P&& p) noexcept;
  template<class T, class Alloc, class U>
  constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
                                                  U&& u) noexcept;
  template<class T, class Alloc, class... Args>
  constexpr T make_obj_using_allocator(const Alloc& alloc,
                                       Args&&... args); // freestanding
  template<class T, class Alloc, class... Args>
  constexpr T* uninitialized_construct_using_allocator(T* p, // freestanding
                                                       const Alloc& alloc,
                                                       Args&&... args);
 
  // allocator Traits
  template<class Alloc>
  struct allocator_traits; // freestanding
 
  template<class Pointer, class SizeType = size_t>
  struct allocation_result
  { // freestanding
    Pointer ptr;
    SizeType count;
  };
 
  // the default allocator
  template<class T>
  class allocator;
  template<class T, class U>
  constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
 
  // addressof
  template<class T>
  constexpr T* addressof(T& r) noexcept; // freestanding
  template<class T>
  const T* addressof(const T&&) = delete; // freestanding
 
  // specialized algorithms
  // special memory concepts
  template<class I>
  concept no-throw-input-iterator = /* see description */; // exposition-only
  template<class I>
  concept no-throw-forward-iterator = /* see description */; // exposition-only
  template<class S, class I>
  concept no-throw-sentinel-for = /* see description */; // exposition-only
  template<class R>
  concept no-throw-input-range = /* see description */; // exposition-only
  template<class R>
  concept no-throw-forward-range = /* see description */; // exposition-only
 
  template<class NoThrowForwardIter>
  constexpr void uninitialized_default_construct(NoThrowForwardIter first, // freestanding
                                                 NoThrowForwardIter last);
  template<class ExecutionPolicy, class NoThrowForwardIter>
  void uninitialized_default_construct(ExecutionPolicy&& exec, // freestanding-deleted,
                                       NoThrowForwardIter first,
                                       NoThrowForwardIter last);
  template<class NoThrowForwardIter, class Size>
  constexpr NoThrowForwardIter uninitialized_default_construct_n(NoThrowForwardIter first,
                                                                 Size n); // freestanding
  template<class ExecutionPolicy, class NoThrowForwardIter, class Size>
  NoThrowForwardIter uninitialized_default_construct_n(
    ExecutionPolicy&& exec, // freestanding-deleted,
    NoThrowForwardIter first,
    Size n);
 
  namespace ranges {
    template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S>
      requires default_initializable<iter_value_t<I>>
    constexpr I uninitialized_default_construct(I first, S last); // freestanding
    template<no-throw-forward-range R>
      requires default_initializable<range_value_t<R>>
    constexpr borrowed_iterator_t<R> uninitialized_default_construct(
      R&& r); // freestanding
 
    template<no-throw-forward-iterator I>
      requires default_initializable<iter_value_t<I>>
    constexpr I uninitialized_default_construct_n(I first, // freestanding
                                                  iter_difference_t<I> n);
  }
 
  template<class NoThrowForwardIter>
  constexpr void uninitialized_value_construct(NoThrowForwardIter first, // freestanding
                                               NoThrowForwardIter last);
  template<class ExecutionPolicy, class NoThrowForwardIter>
  void uninitialized_value_construct(ExecutionPolicy&& exec, // freestanding-deleted,
                                     NoThrowForwardIter first,
                                     NoThrowForwardIter last);
  template<class NoThrowForwardIter, class Size>
  constexpr NoThrowForwardIter uninitialized_value_construct_n(NoThrowForwardIter first,
                                                               Size n); // freestanding
  template<class ExecutionPolicy, class NoThrowForwardIter, class Size>
  NoThrowForwardIter uninitialized_value_construct_n(
    ExecutionPolicy&& exec, // freestanding-deleted,
    NoThrowForwardIter first,
    Size n);
 
  namespace ranges {
    template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S>
      requires default_initializable<iter_value_t<I>>
    constexpr I uninitialized_value_construct(I first, S last); // freestanding
    template<no-throw-forward-range R>
      requires default_initializable<range_value_t<R>>
    constexpr borrowed_iterator_t<R> uninitialized_value_construct(R&& r); // freestanding
 
    template<no-throw-forward-iterator I>
      requires default_initializable<iter_value_t<I>>
    constexpr I uninitialized_value_construct_n(I first, // freestanding
                                                iter_difference_t<I> n);
  }
 
  template<class InputIter, class NoThrowForwardIter>
  constexpr NoThrowForwardIter uninitialized_copy(InputIter first, // freestanding
                                                  InputIter last,
                                                  NoThrowForwardIter result);
  template<class ExecutionPolicy, class ForwardIter, class NoThrowForwardIter>
  NoThrowForwardIter uninitialized_copy(ExecutionPolicy&& exec, // freestanding-deleted,
                                        ForwardIter first,
                                        ForwardIter last,
                                        NoThrowForwardIter result);
  template<class InputIter, class Size, class NoThrowForwardIter>
  constexpr NoThrowForwardIter uninitialized_copy_n(InputIter first, // freestanding
                                                    Size n,
                                                    NoThrowForwardIter result);
  template<class ExecutionPolicy,
           class ForwardIter,
           class Size,
           class NoThrowForwardIter>
  NoThrowForwardIter uninitialized_copy_n(ExecutionPolicy&& exec, // freestanding-deleted,
                                          ForwardIter first,
                                          Size n,
                                          NoThrowForwardIter result);
 
  namespace ranges {
    template<class I, class O>
    using uninitialized_copy_result = in_out_result<I, O>; // freestanding
    template<input_iterator I,
             sentinel_for<I> S1,
             no-throw-forward-iterator O,
             no-throw-sentinel-for<O> S2>
      requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
    constexpr uninitialized_copy_result<I, O>
    uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding
    template<input_range IR, no-throw-forward-range OR>
      requires constructible_from<range_value_t<OR>, range_reference_t<IR>>
    constexpr uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
    uninitialized_copy(IR&& in_range, OR&& out_range); // freestanding
 
    template<class I, class O>
    using uninitialized_copy_n_result = in_out_result<I, O>; // freestanding
    template<input_iterator I,
             no-throw-forward-iterator O,
             no-throw-sentinel-for<O> S>
      requires constructible_from<iter_value_t<O>, iter_reference_t<I>>
    constexpr uninitialized_copy_n_result<I, O> uninitialized_copy_n(
      I ifirst,
      iter_difference_t<I> n, // freestanding
      O ofirst,
      S olast);
  }
 
  template<class InputIter, class NoThrowForwardIter>
  constexpr NoThrowForwardIter uninitialized_move(InputIter first, // freestanding
                                                  InputIter last,
                                                  NoThrowForwardIter result);
  template<class ExecutionPolicy, class ForwardIter, class NoThrowForwardIter>
  NoThrowForwardIter uninitialized_move(ExecutionPolicy&& exec, // freestanding-deleted,
                                        ForwardIter first,
                                        ForwardIter last,
                                        NoThrowForwardIter result);
  template<class InputIter, class Size, class NoThrowForwardIter>
  constexpr pair<InputIter, NoThrowForwardIter> uninitialized_move_n(
    InputIter first,
    Size n, // freestanding
    NoThrowForwardIter result);
  template<class ExecutionPolicy, class ForwardIter, class Size, class NoThrowForwardIter>
  pair<ForwardIter, NoThrowForwardIter> uninitialized_move_n(
    ExecutionPolicy&& exec, // freestanding-deleted,
    ForwardIter first,
    Size n,
    NoThrowForwardIter result);
 
  namespace ranges {
    template<class I, class O>
    using uninitialized_move_result = in_out_result<I, O>; // freestanding
    template<input_iterator I,
             sentinel_for<I> S1,
             no-throw-forward-iterator O,
             no-throw-sentinel-for<O> S2>
      requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
    constexpr uninitialized_move_result<I, O>
    uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding
    template<input_range IR, no-throw-forward-range OR>
      requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
    constexpr uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
    uninitialized_move(IR&& in_range, OR&& out_range); // freestanding
 
    template<class I, class O>
    using uninitialized_move_n_result = in_out_result<I, O>; // freestanding
    template<input_iterator I,
             no-throw-forward-iterator O,
             no-throw-sentinel-for<O> S>
      requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
    constexpr uninitialized_move_n_result<I, O> uninitialized_move_n(
      I ifirst,
      iter_difference_t<I> n, // freestanding
      O ofirst,
      S olast);
  }
 
  template<class NoThrowForwardIter, class T>
  constexpr void uninitialized_fill(NoThrowForwardIter first, // freestanding
                                    NoThrowForwardIter last,
                                    const T& x);
  template<class ExecutionPolicy, class NoThrowForwardIter, class T>
  void uninitialized_fill(ExecutionPolicy&& exec, // freestanding-deleted,
                          NoThrowForwardIter first,
                          NoThrowForwardIter last,
                          const T& x);
  template<class NoThrowForwardIter, class Size, class T>
  constexpr NoThrowForwardIter uninitialized_fill_n(NoThrowForwardIter first,
                                                    Size n,
                                                    const T& x); // freestanding
  template<class ExecutionPolicy, class NoThrowForwardIter, class Size, class T>
  NoThrowForwardIter uninitialized_fill_n(ExecutionPolicy&& exec, // freestanding-deleted,
                                          NoThrowForwardIter first,
                                          Size n,
                                          const T& x);
 
  namespace ranges {
    template<no-throw-forward-iterator I, no-throw-sentinel-for<I> S, class T>
      requires constructible_from<iter_value_t<I>, const T&>
    constexpr I uninitialized_fill(I first, S last, const T& x); // freestanding
    template<no-throw-forward-range R, class T>
      requires constructible_from<range_value_t<R>, const T&>
    constexpr borrowed_iterator_t<R> uninitialized_fill(R&& r,
                                                        const T& x); // freestanding
 
    template<no-throw-forward-iterator I, class T>
      requires constructible_from<iter_value_t<I>, const T&>
    constexpr I uninitialized_fill_n(I first, // freestanding
                                     iter_difference_t<I> n,
                                     const T& x);
  }
 
  // construct_at
  template<class T, class... Args>
  constexpr T* construct_at(T* location, Args&&... args); // freestanding
 
  namespace ranges {
    template<class T, class... Args>
    constexpr T* construct_at(T* location, Args&&... args); // freestanding
  }
 
  // destroy
  template<class T>
  constexpr void destroy_at(T* location); // freestanding
  template<class NoThrowForwardIter>
  constexpr void destroy(NoThrowForwardIter first, // freestanding
                         NoThrowForwardIter last);
  template<class ExecutionPolicy, class NoThrowForwardIter>
  void destroy(ExecutionPolicy&& exec, // freestanding-deleted,
               NoThrowForwardIter first,
               NoThrowForwardIter last);
  template<class NoThrowForwardIter, class Size>
  constexpr NoThrowForwardIter destroy_n(NoThrowForwardIter first, // freestanding
                                         Size n);
  template<class ExecutionPolicy, class NoThrowForwardIter, class Size>
  NoThrowForwardIter destroy_n(ExecutionPolicy&& exec, // freestanding-deleted,
                               NoThrowForwardIter first,
                               Size n);
 
  namespace ranges {
    template<destructible T>
    constexpr void destroy_at(T* location) noexcept; // freestanding
 
    template<no-throw-input-iterator I, no-throw-sentinel-for<I> S>
      requires destructible<iter_value_t<I>>
    constexpr I destroy(I first, S last) noexcept; // freestanding
    template<no-throw-input-range R>
      requires destructible<range_value_t<R>>
    constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; // freestanding
 
    template<no-throw-input-iterator I>
      requires destructible<iter_value_t<I>>
    constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; // freestanding
  }
 
  // class template unique_ptr
  template<class T>
  struct default_delete; // freestanding
  template<class T>
  struct default_delete<T[]>; // freestanding
  template<class T, class D = default_delete<T>>
  class unique_ptr; // freestanding
  template<class T, class D>
  class unique_ptr<T[], D>; // freestanding
 
  template<class T, class... Args>
  constexpr unique_ptr<T> make_unique(Args&&... args); // T is not array
  template<class T>
  constexpr unique_ptr<T> make_unique(size_t n); // T is U[]
  template<class T, class... Args>
  /* unspecified */ make_unique(Args&&...) = delete; // T is U[N]
 
  template<class T>
  constexpr unique_ptr<T> make_unique_for_overwrite(); // T is not array
  template<class T>
  constexpr unique_ptr<T> make_unique_for_overwrite(size_t n); // T is U[]
  template<class T, class... Args>
  /* unspecified */ make_unique_for_overwrite(Args&&...) = delete; // T is U[N]
 
  template<class T, class D>
  constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; // freestanding
 
  template<class T1, class D1, class T2, class D2>
  constexpr bool operator==(const unique_ptr<T1, D1>& x, // freestanding
                            const unique_ptr<T2, D2>& y);
  template<class T1, class D1, class T2, class D2>
  bool operator<(const unique_ptr<T1, D1>& x,
                 const unique_ptr<T2, D2>& y); // freestanding
  template<class T1, class D1, class T2, class D2>
  bool operator>(const unique_ptr<T1, D1>& x,
                 const unique_ptr<T2, D2>& y); // freestanding
  template<class T1, class D1, class T2, class D2>
  bool operator<=(const unique_ptr<T1, D1>& x,
                  const unique_ptr<T2, D2>& y); // freestanding
  template<class T1, class D1, class T2, class D2>
  bool operator>=(const unique_ptr<T1, D1>& x,
                  const unique_ptr<T2, D2>& y); // freestanding
  template<class T1, class D1, class T2, class D2>
    requires three_way_comparable_with<typename unique_ptr<T1, D1>::pointer,
                                       typename unique_ptr<T2, D2>::pointer>
  compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,
                             typename unique_ptr<T2, D2>::pointer>
  operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
 
  template<class T, class D>
  constexpr bool operator==(const unique_ptr<T, D>& x,
                            nullptr_t) noexcept; // freestanding
  template<class T, class D>
  constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t); // freestanding
  template<class T, class D>
  constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& y); // freestanding
  template<class T, class D>
  constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t); // freestanding
  template<class T, class D>
  constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& y); // freestanding
  template<class T, class D>
  constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t); // freestanding
  template<class T, class D>
  constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& y); // freestanding
  template<class T, class D>
  constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t); // freestanding
  template<class T, class D>
  constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // freestanding
  template<class T, class D>
    requires three_way_comparable<typename unique_ptr<T, D>::pointer>
  constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer> operator<=>(
    const unique_ptr<T, D>& x,
    nullptr_t); // freestanding
 
  template<class E, class T, class Y, class D>
  basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);
 
  // class bad_weak_ptr
  class bad_weak_ptr;
 
  // class template shared_ptr
  template<class T>
  class shared_ptr;
 
  // shared_ptr creation
  template<class T, class... Args>
  shared_ptr<T> make_shared(Args&&... args); // T is not array
  template<class T, class A, class... Args>
  shared_ptr<T> allocate_shared(const A& a, Args&&... args); // T is not array
 
  template<class T>
  shared_ptr<T> make_shared(size_t N); // T is U[]
  template<class T, class A>
  shared_ptr<T> allocate_shared(const A& a, size_t N); // T is U[]
 
  template<class T>
  shared_ptr<T> make_shared(); // T is U[N]
  template<class T, class A>
  shared_ptr<T> allocate_shared(const A& a); // T is U[N]
 
  template<class T>
  shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // T is U[]
  template<class T, class A>
  shared_ptr<T> allocate_shared(const A& a,
                                size_t N,
                                const remove_extent_t<T>& u); // T is U[]
 
  template<class T>
  shared_ptr<T> make_shared(const remove_extent_t<T>& u); // T is U[N]
  template<class T, class A>
  shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // T is U[N]
 
  template<class T>
  shared_ptr<T> make_shared_for_overwrite(); // T is not U[]
  template<class T, class A>
  shared_ptr<T> allocate_shared_for_overwrite(const A& a); // T is not U[]
 
  template<class T>
  shared_ptr<T> make_shared_for_overwrite(size_t N); // T is U[]
  template<class T, class A>
  shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // T is U[]
 
  // shared_ptr comparisons
  template<class T, class U>
  bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
  template<class T, class U>
  strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
 
  template<class T>
  bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;
  template<class T>
  strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept;
 
  // shared_ptr specialized algorithms
  template<class T>
  void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
 
  // shared_ptr casts
  template<class T, class U>
  shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;
  template<class T, class U>
  shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;
  template<class T, class U>
  shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;
  template<class T, class U>
  shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;
  template<class T, class U>
  shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
  template<class T, class U>
  shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;
  template<class T, class U>
  shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;
  template<class T, class U>
  shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;
 
  // shared_ptr get_deleter
  template<class D, class T>
  D* get_deleter(const shared_ptr<T>& p) noexcept;
 
  // shared_ptr I/O
  template<class E, class T, class Y>
  basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);
 
  // class template weak_ptr
  template<class T>
  class weak_ptr;
 
  // weak_ptr specialized algorithms
  template<class T>
  void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
 
  // class template owner_less
  template<class T = void>
  struct owner_less;
 
  // struct owner_hash
  struct owner_hash;
 
  // struct owner_equal
  struct owner_equal;
 
  // class template enable_shared_from_this
  template<class T>
  class enable_shared_from_this;
 
  // hash support
  template<class T>
  struct hash; // freestanding
  template<class T, class D>
  struct hash<unique_ptr<T, D>>; // freestanding
  template<class T>
  struct hash<shared_ptr<T>>;
 
  // atomic smart pointers
  template<class T>
  struct atomic; // freestanding
  template<class T>
  struct atomic<shared_ptr<T>>;
  template<class T>
  struct atomic<weak_ptr<T>>;
 
  // class template out_ptr_t
  template<class Smart, class Pointer, class... Args>
  class out_ptr_t; // freestanding
 
  // function template out_ptr
  template<class Pointer = void, class Smart, class... Args>
  auto out_ptr(Smart& s, Args&&... args); // freestanding
 
  // class template inout_ptr_t
  template<class Smart, class Pointer, class... Args>
  class inout_ptr_t; // freestanding
 
  // function template inout_ptr
  template<class Pointer = void, class Smart, class... Args>
  auto inout_ptr(Smart& s, Args&&... args); // freestanding
 
  // class template indirect
  template<class T, class Allocator = allocator<T>>
  class indirect;
 
  // hash support
  template<class T, class Alloc>
  struct hash<indirect<T, Alloc>>;
 
  // class template polymorphic
  template<class T, class Allocator = allocator<T>>
  class polymorphic;
 
  namespace pmr {
    template<class T>
    using indirect = indirect<T, polymorphic_allocator<T>>;
    template<class T>
    using polymorphic = polymorphic<T, polymorphic_allocator<T>>;
  }
}

[edit] Helper concepts

Note: These names are only for exposition, they are not part of the interface.

template<class I>
concept no-throw-input-iterator = // exposition only
  input_iterator<I> &&
  is_lvalue_reference_v<iter_reference_t<I>> &&
  same_as<remove_cvref_t<iter_reference_t<I>>, iter_value_t<I>>;
 
template<class S, class I>
concept no-throw-sentinel-for = sentinel_for<S, I>; // exposition only
 
template<class R>
concept no-throw-input-range = // exposition only
  ranges::range<R> &&
  no-throw-input-iterator<ranges::iterator_t<R>> &&
  no-throw-sentinel-for<ranges::sentinel_t<R>, ranges::iterator_t<R>>;
 
template<class I>
concept no-throw-forward-iterator = // exposition only
  no-throw-input-iterator<I> &&
  forward_iterator<I> &&
  no-throw-sentinel-for<I, I>;
 
template<class R>
concept no-throw-forward-range = // exposition only
  no-throw-input-range<R> &&
  no-throw-forward-iterator<ranges::iterator_t<R>>;

[edit] Class template std::pointer_traits

namespace std {
  template<class Ptr>
  struct pointer_traits
  {
    /* see description */;
  };
 
  template<class T>
  struct pointer_traits<T*>
  {
    using pointer         = T*;
    using element_type    = T;
    using difference_type = ptrdiff_t;
 
    template<class U>
    using rebind = U*;
 
    static constexpr pointer pointer_to(/* see description */ r) noexcept;
  };
}

[edit] Class std::allocator_arg_t

namespace std {
  struct allocator_arg_t { explicit allocator_arg_t() = default; };
  inline constexpr allocator_arg_t allocator_arg{};
}

[edit] Class template std::allocator_traits

namespace std {
  template<class Alloc>
  struct allocator_traits
  {
    using allocator_type                         = Alloc;
 
    using value_type                             = typename Alloc::value_type;
 
    using pointer                                = /* see description */;
    using const_pointer                          = /* see description */;
    using void_pointer                           = /* see description */;
    using const_void_pointer                     = /* see description */;
 
    using difference_type                        = /* see description */;
    using size_type                              = /* see description */;
 
    using propagate_on_container_copy_assignment = /* see description */;
    using propagate_on_container_move_assignment = /* see description */;
    using propagate_on_container_swap            = /* see description */;
    using is_always_equal                        = /* see description */;
 
    template<class T>
    using rebind_alloc = /* see description */;
    template<class T>
    using rebind_traits = allocator_traits<rebind_alloc<T>>;
 
    static constexpr pointer allocate(Alloc& a, size_type n);
    static constexpr pointer allocate(Alloc& a, size_type n, const_void_pointer hint);
    static constexpr allocation_result<pointer, size_type> allocate_at_least(Alloc& a,
                                                                             size_type n);
 
    static constexpr void deallocate(Alloc& a, pointer p, size_type n);
 
    template<class T, class... Args>
    static constexpr void construct(Alloc& a, T* p, Args&&... args);
 
    template<class T>
    static constexpr void destroy(Alloc& a, T* p);
 
    static constexpr size_type max_size(const Alloc& a) noexcept;
 
    static constexpr Alloc select_on_container_copy_construction(const Alloc& rhs);
  };
}

[edit] Class template std::allocator

namespace std {
  template<class T>
  class allocator
  {
  public:
    using value_type                             = T;
    using size_type                              = size_t;
    using difference_type                        = ptrdiff_t;
    using propagate_on_container_move_assignment = true_type;
 
    constexpr allocator() noexcept;
    constexpr allocator(const allocator&) noexcept;
    template<class U>
    constexpr allocator(const allocator<U>&) noexcept;
    constexpr ~allocator();
    constexpr allocator& operator=(const allocator&) = default;
 
    constexpr T* allocate(size_t n);
    constexpr allocation_result<T*> allocate_at_least(size_t n);
    constexpr void deallocate(T* p, size_t n);
  };
}

[edit] Class template std::default_delete

namespace std {
  template<class T>
  struct default_delete
  {
    constexpr default_delete() noexcept = default;
    template<class U>
    constexpr default_delete(const default_delete<U>&) noexcept;
    constexpr void operator()(T*) const;
  };
 
  template<class T>
  struct default_delete<T[]>
  {
    constexpr default_delete() noexcept = default;
    template<class U>
    constexpr default_delete(const default_delete<U[]>&) noexcept;
    template<class U>
    constexpr void operator()(U* ptr) const;
  };
}

[edit] Class template std::unique_ptr

namespace std {
  template<class T, class D = default_delete<T>>
  class unique_ptr
  {
  public:
    using pointer      = /* see description */;
    using element_type = T;
    using deleter_type = D;
 
    // constructors
    constexpr unique_ptr() noexcept;
    constexpr explicit unique_ptr(type_identity_t<pointer> p) noexcept;
    constexpr unique_ptr(type_identity_t<pointer> p, /* see description */ d1) noexcept;
    constexpr unique_ptr(type_identity_t<pointer> p, /* see description */ d2) noexcept;
    constexpr unique_ptr(unique_ptr&& u) noexcept;
    constexpr unique_ptr(nullptr_t) noexcept;
    template<class U, class E>
    constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;
 
    // destructor
    constexpr ~unique_ptr();
 
    // assignment
    constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;
    template<class U, class E>
    constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
    constexpr unique_ptr& operator=(nullptr_t) noexcept;
 
    // observers
    constexpr add_lvalue_reference_t<T> operator*() const noexcept(/* see description */);
    constexpr pointer operator->() const noexcept;
    constexpr pointer get() const noexcept;
    constexpr deleter_type& get_deleter() noexcept;
    constexpr const deleter_type& get_deleter() const noexcept;
    constexpr explicit operator bool() const noexcept;
 
    // modifiers
    constexpr pointer release() noexcept;
    constexpr void reset(pointer p = pointer()) noexcept;
    constexpr void swap(unique_ptr& u) noexcept;
 
    // disable copy from lvalue
    unique_ptr(const unique_ptr&)            = delete;
    unique_ptr& operator=(const unique_ptr&) = delete;
  };
 
  template<class T, class D>
  class unique_ptr<T[], D>
  {
  public:
    using pointer      = /* see description */;
    using element_type = T;
    using deleter_type = D;
 
    // constructors
    constexpr unique_ptr() noexcept;
    template<class U>
    constexpr explicit unique_ptr(U p) noexcept;
    template<class U>
    constexpr unique_ptr(U p, /* see description */ d) noexcept;
    template<class U>
    constexpr unique_ptr(U p, /* see description */ d) noexcept;
    constexpr unique_ptr(unique_ptr&& u) noexcept;
    template<class U, class E>
    constexpr unique_ptr(unique_ptr<U, E>&& u) noexcept;
    constexpr unique_ptr(nullptr_t) noexcept;
 
    // destructor
    constexpr ~unique_ptr();
 
    // assignment
    constexpr unique_ptr& operator=(unique_ptr&& u) noexcept;
    template<class U, class E>
    constexpr unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
    constexpr unique_ptr& operator=(nullptr_t) noexcept;
 
    // observers
    constexpr T& operator[](size_t i) const;
    constexpr pointer get() const noexcept;
    constexpr deleter_type& get_deleter() noexcept;
    constexpr const deleter_type& get_deleter() const noexcept;
    constexpr explicit operator bool() const noexcept;
 
    // modifiers
    constexpr pointer release() noexcept;
    template<class U>
    constexpr void reset(U p) noexcept;
    constexpr void reset(nullptr_t = nullptr) noexcept;
    constexpr void swap(unique_ptr& u) noexcept;
 
    // disable copy from lvalue
    unique_ptr(const unique_ptr&)            = delete;
    unique_ptr& operator=(const unique_ptr&) = delete;
  };
}

[edit] Class std::bad_weak_ptr

namespace std {
  class bad_weak_ptr : public exception
  {
  public:
    // for the specification of the special member functions
    const char* what() const noexcept override;
  };
}

[edit] Class template std::shared_ptr

namespace std {
  template<class T>
  class shared_ptr
  {
  public:
    using element_type = remove_extent_t<T>;
    using weak_type    = weak_ptr<T>;
 
    // constructors
    constexpr shared_ptr() noexcept;
    constexpr shared_ptr(nullptr_t) noexcept
      : shared_ptr()
    {
    }
    template<class Y>
    explicit shared_ptr(Y* p);
    template<class Y, class D>
    shared_ptr(Y* p, D d);
    template<class Y, class D, class A>
    shared_ptr(Y* p, D d, A a);
    template<class D>
    shared_ptr(nullptr_t p, D d);
    template<class D, class A>
    shared_ptr(nullptr_t p, D d, A a);
    template<class Y>
    shared_ptr(const shared_ptr<Y>& r, element_type* p) noexcept;
    template<class Y>
    shared_ptr(shared_ptr<Y>&& r, element_type* p) noexcept;
    shared_ptr(const shared_ptr& r) noexcept;
    template<class Y>
    shared_ptr(const shared_ptr<Y>& r) noexcept;
    shared_ptr(shared_ptr&& r) noexcept;
    template<class Y>
    shared_ptr(shared_ptr<Y>&& r) noexcept;
    template<class Y>
    explicit shared_ptr(const weak_ptr<Y>& r);
    template<class Y, class D>
    shared_ptr(unique_ptr<Y, D>&& r);
 
    // destructor
    ~shared_ptr();
 
    // assignment
    shared_ptr& operator=(const shared_ptr& r) noexcept;
    template<class Y>
    shared_ptr& operator=(const shared_ptr<Y>& r) noexcept;
    shared_ptr& operator=(shared_ptr&& r) noexcept;
    template<class Y>
    shared_ptr& operator=(shared_ptr<Y>&& r) noexcept;
    template<class Y, class D>
    shared_ptr& operator=(unique_ptr<Y, D>&& r);
 
    // modifiers
    void swap(shared_ptr& r) noexcept;
    void reset() noexcept;
    template<class Y>
    void reset(Y* p);
    template<class Y, class D>
    void reset(Y* p, D d);
    template<class Y, class D, class A>
    void reset(Y* p, D d, A a);
 
    // observers
    element_type* get() const noexcept;
    T& operator*() const noexcept;
    T* operator->() const noexcept;
    element_type& operator[](ptrdiff_t i) const;
    long use_count() const noexcept;
    explicit operator bool() const noexcept;
    template<class U>
    bool owner_before(const shared_ptr<U>& b) const noexcept;
    template<class U>
    bool owner_before(const weak_ptr<U>& b) const noexcept;
    size_t owner_hash() const noexcept;
    template<class U>
    bool owner_equal(const shared_ptr<U>& b) const noexcept;
    template<class U>
    bool owner_equal(const weak_ptr<U>& b) const noexcept;
  };
 
  template<class T>
  shared_ptr(weak_ptr<T>) -> shared_ptr<T>;
  template<class T, class D>
  shared_ptr(unique_ptr<T, D>) -> shared_ptr<T>;
}

[edit] Class template std::weak_ptr

namespace std {
  template<class T>
  class weak_ptr
  {
  public:
    using element_type = remove_extent_t<T>;
 
    // constructors
    constexpr weak_ptr() noexcept;
    template<class Y>
    weak_ptr(const shared_ptr<Y>& r) noexcept;
    weak_ptr(const weak_ptr& r) noexcept;
    template<class Y>
    weak_ptr(const weak_ptr<Y>& r) noexcept;
    weak_ptr(weak_ptr&& r) noexcept;
    template<class Y>
    weak_ptr(weak_ptr<Y>&& r) noexcept;
 
    // destructor
    ~weak_ptr();
 
    // assignment
    weak_ptr& operator=(const weak_ptr& r) noexcept;
    template<class Y>
    weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
    template<class Y>
    weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
    weak_ptr& operator=(weak_ptr&& r) noexcept;
    template<class Y>
    weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;
 
    // modifiers
    void swap(weak_ptr& r) noexcept;
    void reset() noexcept;
 
    // observers
    long use_count() const noexcept;
    bool expired() const noexcept;
    shared_ptr<T> lock() const noexcept;
    template<class U>
    bool owner_before(const shared_ptr<U>& b) const noexcept;
    template<class U>
    bool owner_before(const weak_ptr<U>& b) const noexcept;
    size_t owner_hash() const noexcept;
    template<class U>
    bool owner_equal(const shared_ptr<U>& b) const noexcept;
    template<class U>
    bool owner_equal(const weak_ptr<U>& b) const noexcept;
  };
 
  template<class T>
  weak_ptr(shared_ptr<T>) -> weak_ptr<T>;
}

[edit] Class template std::owner_less

namespace std {
  template<class T = void>
  struct owner_less;
 
  template<class T>
  struct owner_less<shared_ptr<T>>
  {
    bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept;
    bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
    bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
  };
 
  template<class T>
  struct owner_less<weak_ptr<T>>
  {
    bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept;
    bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
    bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
  };
 
  template<>
  struct owner_less<void>
  {
    template<class T, class U>
    bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;
 
    using is_transparent = /* unspecified */;
  };
}

[edit] Class std::owner_hash

namespace std {
  struct owner_hash
  {
    template<class T>
    size_t operator()(const shared_ptr<T>&) const noexcept;
 
    template<class T>
    size_t operator()(const weak_ptr<T>&) const noexcept;
 
    using is_transparent = /* unspecified */;
  };
}

[edit] Class std::owner_equal

namespace std {
  struct owner_equal
  {
    template<class T, class U>
    bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;
    template<class T, class U>
    bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;
 
    using is_transparent = /* unspecified */;
  };
}

[edit] Class template std::enable_shared_from_this

namespace std {
  template<class T>
  class enable_shared_from_this
  {
  protected:
    constexpr enable_shared_from_this() noexcept;
    enable_shared_from_this(const enable_shared_from_this&) noexcept;
    enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
    ~enable_shared_from_this();
 
  public:
    shared_ptr<T> shared_from_this();
    shared_ptr<T const> shared_from_this() const;
    weak_ptr<T> weak_from_this() noexcept;
    weak_ptr<T const> weak_from_this() const noexcept;
 
  private:
    mutable weak_ptr<T> /*weak-this*/; // exposition-only
  };
}

[edit] Class template std::atomic's specialization for std::shared_ptr

namespace std {
  template<class T> struct atomic<shared_ptr<T>> {
    using value_type = shared_ptr<T>;
    static constexpr bool is_always_lock_free = /* implementation-defined */;
 
    bool is_lock_free() const noexcept;
    void store(shared_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
    shared_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
    operator shared_ptr<T>() const noexcept;
 
    shared_ptr<T> exchange(shared_ptr<T> desired,
                           memory_order order = memory_order::seq_cst) noexcept;
 
    bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
                               memory_order success, memory_order failure) noexcept;
    bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
                                 memory_order success, memory_order failure) noexcept;
 
    bool compare_exchange_weak(shared_ptr<T>& expected, shared_ptr<T> desired,
                               memory_order order = memory_order::seq_cst) noexcept;
    bool compare_exchange_strong(shared_ptr<T>& expected, shared_ptr<T> desired,
                                 memory_order order = memory_order::seq_cst) noexcept;
 
    constexpr atomic() noexcept = default;
    atomic(shared_ptr<T> desired) noexcept;
    atomic(const atomic&) = delete;
    void operator=(const atomic&) = delete;
    void operator=(shared_ptr<T> desired) noexcept;
 
  private:
    shared_ptr<T> p;            // exposition only
  };
}

[edit] Class template std::atomic's specialization for std::weak_ptr

namespace std {
  template<class T> struct atomic<weak_ptr<T>> {
    using value_type = weak_ptr<T>;
    static constexpr bool is_always_lock_free = /* implementation-defined */;
 
    bool is_lock_free() const noexcept;
    void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
    weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
    operator weak_ptr<T>() const noexcept;
 
    weak_ptr<T> exchange(weak_ptr<T> desired,
                         memory_order order = memory_order::seq_cst) noexcept;
 
    bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
                               memory_order success, memory_order failure) noexcept;
    bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
                                 memory_order success, memory_order failure) noexcept;
 
    bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
                               memory_order order = memory_order::seq_cst) noexcept;
    bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
                                 memory_order order = memory_order::seq_cst) noexcept;
 
    constexpr atomic() noexcept = default;
    atomic(weak_ptr<T> desired) noexcept;
    atomic(const atomic&) = delete;
    void operator=(const atomic&) = delete;
    void operator=(weak_ptr<T> desired) noexcept;
 
  private:
    weak_ptr<T> p;              // exposition only
  };
}

[edit] Class template std::out_ptr_t

namespace std {
  template<class Smart, class Pointer, class... Args>
  class out_ptr_t
  {
  public:
    explicit out_ptr_t(Smart&, Args...);
    out_ptr_t(const out_ptr_t&) = delete;
 
    ~out_ptr_t();
 
    operator Pointer*() const noexcept;
    operator void**() const noexcept;
 
  private:
    Smart& s;         // exposition-only
    tuple<Args...> a; // exposition-only
    Pointer p;        // exposition-only
  };
}

[edit] Class template std::inout_ptr_t

namespace std {
  template<class Smart, class Pointer, class... Args>
  class inout_ptr_t
  {
  public:
    explicit inout_ptr_t(Smart&, Args...);
    inout_ptr_t(const inout_ptr_t&) = delete;
 
    ~inout_ptr_t();
 
    operator Pointer*() const noexcept;
    operator void**() const noexcept;
 
  private:
    Smart& s;         // exposition-only
    tuple<Args...> a; // exposition-only
    Pointer p;        // exposition-only
  };
}

[edit] Class template std::indirect

namespace std {
  template<class T, class Allocator = allocator<T>>
  class indirect
  {
  public:
    using value_type     = T;
    using allocator_type = Allocator;
    using pointer        = typename allocator_traits<Allocator>::pointer;
    using const_pointer  = typename allocator_traits<Allocator>::const_pointer;
 
    // constructors
    constexpr explicit indirect();
    constexpr explicit indirect(allocator_arg_t, const Allocator& a);
    constexpr indirect(const indirect& other);
    constexpr indirect(allocator_arg_t, const Allocator& a, const indirect& other);
    constexpr indirect(indirect&& other) noexcept;
    constexpr indirect(allocator_arg_t,
                       const Allocator& a,
                       indirect&& other) noexcept(/* see description */);
    template<class U = T>
    constexpr explicit indirect(U&& u);
    template<class U = T>
    constexpr explicit indirect(allocator_arg_t, const Allocator& a, U&& u);
    template<class... Us>
    constexpr explicit indirect(in_place_t, Us&&... us);
    template<class... Us>
    constexpr explicit indirect(allocator_arg_t,
                                const Allocator& a,
                                in_place_t,
                                Us&&... us);
    template<class I, class... Us>
    constexpr explicit indirect(in_place_t, initializer_list<I> ilist, Us&&... us);
    template<class I, class... Us>
    constexpr explicit indirect(allocator_arg_t,
                                const Allocator& a,
                                in_place_t,
                                initializer_list<I> ilist,
                                Us&&... us);
 
    // destructor
    constexpr ~indirect();
 
    // assignment
    constexpr indirect& operator=(const indirect& other);
    constexpr indirect& operator=(indirect&& other) noexcept(/* see description */);
    template<class U = T>
    constexpr indirect& operator=(U&& u);
 
    // observers
    constexpr const T& operator*() const& noexcept;
    constexpr T& operator*() & noexcept;
    constexpr const T&& operator*() const&& noexcept;
    constexpr T&& operator*() && noexcept;
    constexpr const_pointer operator->() const noexcept;
    constexpr pointer operator->() noexcept;
    constexpr bool valueless_after_move() const noexcept;
    constexpr allocator_type get_allocator() const noexcept;
 
    // swap
    constexpr void swap(indirect& other) noexcept(/* see description */);
    friend constexpr void swap(indirect& lhs,
                               indirect& rhs) noexcept(/* see description */);
 
    // relational operators
    template<class U, class AA>
    friend constexpr bool operator==(
      const indirect& lhs,
      const indirect<U, AA>& rhs) noexcept(/* see description */);
    template<class U, class AA>
    friend constexpr auto operator<=>(const indirect& lhs, const indirect<U, AA>& rhs)
      -> /*synth-three-way-result*/<T, U>;
 
    // comparison with T
    template<class U>
    friend constexpr bool operator==(const indirect& lhs,
                                     const U& rhs) noexcept(/* see description */);
    template<class U>
    friend constexpr auto operator<=>(const indirect& lhs, const U& rhs)
      -> /*synth-three-way-result*/<T, U>;
 
  private:
    pointer /*p*/;                     // exposition-only
    Allocator /*alloc*/ = Allocator(); // exposition-only
  };
  template<class Value>
  indirect(Value) -> indirect<Value>;
  template<class Allocator, class Value>
  indirect(allocator_arg_t, Allocator, Value)
    -> indirect<Value,
                typename allocator_traits<Allocator>::template rebind_alloc<Value>>;
}

[edit] Class template std::polymorphic

namespace std {
  template<class T, class Allocator = allocator<T>>
  class polymorphic
  {
  public:
    using value_type     = T;
    using allocator_type = Allocator;
    using pointer        = typename allocator_traits<Allocator>::pointer;
    using const_pointer  = typename allocator_traits<Allocator>::const_pointer;
 
    // constructors
    constexpr explicit polymorphic();
    constexpr explicit polymorphic(allocator_arg_t, const Allocator& a);
    constexpr polymorphic(const polymorphic& other);
    constexpr polymorphic(allocator_arg_t, const Allocator& a, const polymorphic& other);
    constexpr polymorphic(polymorphic&& other) noexcept;
    constexpr polymorphic(allocator_arg_t,
                          const Allocator& a,
                          polymorphic&& other) noexcept(/* see description */);
    template<class U = T>
    constexpr explicit polymorphic(U&& u);
    template<class U = T>
    constexpr explicit polymorphic(allocator_arg_t, const Allocator& a, U&& u);
    template<class U, class... Ts>
    constexpr explicit polymorphic(in_place_type_t<U>, Ts&&... ts);
    template<class U, class... Ts>
    constexpr explicit polymorphic(allocator_arg_t,
                                   const Allocator& a,
                                   in_place_type_t<U>,
                                   Ts&&... ts);
    template<class U, class I, class... Us>
    constexpr explicit polymorphic(in_place_type_t<U>,
                                   initializer_list<I> ilist,
                                   Us&&... us);
    template<class U, class I, class... Us>
    constexpr explicit polymorphic(allocator_arg_t,
                                   const Allocator& a,
                                   in_place_type_t<U>,
                                   initializer_list<I> ilist,
                                   Us&&... us);
 
    // destructor
    constexpr ~polymorphic();
 
    // assignment
    constexpr polymorphic& operator=(const polymorphic& other);
    constexpr polymorphic& operator=(polymorphic&& other) noexcept(/* see description */);
 
    // observers
    constexpr const T& operator*() const noexcept;
    constexpr T& operator*() noexcept;
    constexpr const_pointer operator->() const noexcept;
    constexpr pointer operator->() noexcept;
    constexpr bool valueless_after_move() const noexcept;
    constexpr allocator_type get_allocator() const noexcept;
 
    // swap
    constexpr void swap(polymorphic& other) noexcept(/* see description */);
    friend constexpr void swap(polymorphic& lhs,
                               polymorphic& rhs) noexcept(/* see description */);
 
  private:
    Allocator /*alloc*/ = Allocator(); // exposition-only
  };
}