نبذة عني
مقالات Ibrahim
النشاط
-
Impressive work leveraging MCP's modular architecture to democratize research discovery. Research Nexus exemplifies how proper agent-tool decoupling…
Impressive work leveraging MCP's modular architecture to democratize research discovery. Research Nexus exemplifies how proper agent-tool decoupling…
تمت المشاركة من قبل Ibrahim Sobh - PhD
-
خلونا نتكلم عن حاجة مهمة في عالم البحث العلمي: P-hacking! 🔍 ببساطة، P-hacking هي ممارسة بيعملها الباحثين - أحياناً من غير قصد - لما بيحللوا البيانات…
خلونا نتكلم عن حاجة مهمة في عالم البحث العلمي: P-hacking! 🔍 ببساطة، P-hacking هي ممارسة بيعملها الباحثين - أحياناً من غير قصد - لما بيحللوا البيانات…
تمت المشاركة من قبل Ibrahim Sobh - PhD
-
ممكن تكون بتبني RAG صح... بس الاجابة الصح مش بتوصل للـ LLM تخيل عندك سؤال زي "عاوز احدث أدوات الذكاء الاصطناعي" وفي chunk في ال vector database…
ممكن تكون بتبني RAG صح... بس الاجابة الصح مش بتوصل للـ LLM تخيل عندك سؤال زي "عاوز احدث أدوات الذكاء الاصطناعي" وفي chunk في ال vector database…
تم إبداء الإعجاب من قبل Ibrahim Sobh - PhD
الخبرة والتعليم
التراخيص والشهادات
الخبرات التطوعية
المنشورات
-
Exploring applications of deep reinforcement learning for real-world autonomous driving systems
VISAPP 2019: International Conference on Computer Vision Theory and Applications
-
End-to-End Framework for Fast Learning Asynchronous Agents
NeurIPS 2018: Imitation Learning and its Challenges in Robotics
The ability to imitate by learning from demonstrations is used by robots to derive a policy. However, the quality of a learned policy depends mainly on the quality of the provided demonstrations. In Reinforcement Learning (RL), an agent learns optimal policy through interacting with its environment and receiving sparse reward signals, leading to a time consuming learning process. In this work, we aim to combine the benefits of imitation learning (IL) and deep RL. We propose a novel training…
The ability to imitate by learning from demonstrations is used by robots to derive a policy. However, the quality of a learned policy depends mainly on the quality of the provided demonstrations. In Reinforcement Learning (RL), an agent learns optimal policy through interacting with its environment and receiving sparse reward signals, leading to a time consuming learning process. In this work, we aim to combine the benefits of imitation learning (IL) and deep RL. We propose a novel training framework for speeding up the training process through extending the Asynchronous Advantage Actor-Critic (A3C) algorithm by IL, leveraging multiple, non-human imperfect mentors. ViZDoom, a 3D world software, is used as a test case. The experimental results show that the learning agent achieves a better performance than the mentors. Furthermore, in comparison to the standard A3C algorithm, the proposed training framework succeeds to attain the same performance, while achieving 2.7X faster learning.
مؤلفون آخرونعرض المنشور -
End-To-End Multi-Modal Sensors Fusion System For Urban Automated Driving
NeurIPS 2018: Machine Learning for Intelligent Transportation Systems
Abstract: In this paper, we present a novel framework for urban automated driving based on multi-modal sensors; LiDAR and Camera. Environment perception through sensors fusion is key to successful deployment of automated driving systems, especially in complex urban areas. Our hypothesis is that a well designed deep neural network is able to end-to-end learn a driving policy that fuses LiDAR and Camera sensory input, achieving the best out of both. In order to improve the generalization and…
Abstract: In this paper, we present a novel framework for urban automated driving based on multi-modal sensors; LiDAR and Camera. Environment perception through sensors fusion is key to successful deployment of automated driving systems, especially in complex urban areas. Our hypothesis is that a well designed deep neural network is able to end-to-end learn a driving policy that fuses LiDAR and Camera sensory input, achieving the best out of both. In order to improve the generalization and robustness of the learned policy, semantic segmentation on camera is applied, in addition to applying our new LiDAR post processing method; Polar Grid Mapping (PGM). The system is evaluated on the recently released urban car simulator, CARLA. The evaluation is measured according to the generalization performance from one environment to another. The experimental results show that the best performance is achieved by fusing the PGM and semantic segmentation.
Keywords: End-to-end learning, Conditional imitation learning, Sensors fusionمؤلفون آخرونعرض المنشور -
YOLO4D: A Spatio-temporal Approach for Real-time Multi-object Detection and Classification from LiDAR Point Clouds
NIPS
Abstract: In this paper, YOLO4D is presented for Spatio-temporal Real-time 3D Multi-object detection and classification from LiDAR point clouds. Automated Driving dynamic scenarios are rich in temporal information. Most of the current 3D Object Detection approaches are focused on processing the spatial sensory features, either in 2D or 3D spaces, while the temporal factor is not fully exploited yet, especially from 3D LiDAR point clouds. In YOLO4D approach, the 3D LiDAR point clouds are…
Abstract: In this paper, YOLO4D is presented for Spatio-temporal Real-time 3D Multi-object detection and classification from LiDAR point clouds. Automated Driving dynamic scenarios are rich in temporal information. Most of the current 3D Object Detection approaches are focused on processing the spatial sensory features, either in 2D or 3D spaces, while the temporal factor is not fully exploited yet, especially from 3D LiDAR point clouds. In YOLO4D approach, the 3D LiDAR point clouds are aggregated over time as a 4D tensor; 3D space dimensions in addition to the time dimension, which is fed to a one-shot fully convolutional detector, based on YOLO v2. The outputs are the oriented 3D Object Bounding Box information, together with the object class. Two different techniques are evaluated to incorporate the temporal dimension; recurrence and frame stacking. The experiments conducted on KITTI dataset, show the advantages of incorporating the temporal dimension.
Keywords: 3D object detection, LiDAR, Real-time, Spatiotemporal, ConvLSTMمؤلفون آخرونعرض المنشور -
Robust Dual View Deep Agent
Proceeding of the 2nd International Sino-Egyptian Congress on Agriculture, Veterinary Sciences and Engineering, 2017
Motivated by recent advance of machine learning using Deep Reinforcement Learning this paper proposes a modified architecture that produces more robust agents and speeds up the training process. Our architecture is based on Asynchronous Advantage Actor-Critic (A3C) algorithm where the total input dimensionality is halved by dividing the input into two independent streams. We use ViZDoom, 3D world software that is based on the classical first person shooter video game, Doom as a test case. The…
Motivated by recent advance of machine learning using Deep Reinforcement Learning this paper proposes a modified architecture that produces more robust agents and speeds up the training process. Our architecture is based on Asynchronous Advantage Actor-Critic (A3C) algorithm where the total input dimensionality is halved by dividing the input into two independent streams. We use ViZDoom, 3D world software that is based on the classical first person shooter video game, Doom as a test case. The experiments show that in comparison to single input agents, the proposed architecture succeeds to have the same playing performance and shows more robust behavior, achieving significant reduction in the number of training parameters of almost 30%.
مؤلفون آخرون -
Statistical Formant Speech Synthesis for Arabic
Springer, Arabian Journal for Science and Engineering
عرض المنشورThis work constructs a hybrid system that integrates formant synthesis and context-dependent Hidden Semi-Markov Models (HSMM). HSMM parameters comprise of formants, fundamental frequency, voicing/frication amplitude, and duration. For HSMM training, formants, fundamental frequency, and voicing/frication amplitude are extracted from waveforms using the Snack toolbox and a decomposition algorithm, and duration is calculated using HMM modeled by multivariate Gaussian distribution. The acoustic…
This work constructs a hybrid system that integrates formant synthesis and context-dependent Hidden Semi-Markov Models (HSMM). HSMM parameters comprise of formants, fundamental frequency, voicing/frication amplitude, and duration. For HSMM training, formants, fundamental frequency, and voicing/frication amplitude are extracted from waveforms using the Snack toolbox and a decomposition algorithm, and duration is calculated using HMM modeled by multivariate Gaussian distribution. The acoustic features are then generated from the trained HSMM models and combined with default values of complementary acoustic features such as glottal waveform parameters to produce speech waveforms utilizing the Klatt synthesizer. We construct the text processor for phonetic transcription required at the training and synthesis phases by utilizing phonemic pronunciation algorithms. A perceptual test reveals that the statistical formant speech text-to-speech system produces good-quality speech while utilizing features that are small in dimension and close to speech perception cues.
-
Building an Arabic Lexical Semantic Analyzer
7th International Computing Conference in Arabic, Riyadh Saudi Arabia
-
Evaluation Approaches for an Arabic Extractive Generic Text Summarization System
2nd International Conference on Arabic Language Resources and Tools, Cairo Egypt
-
An Optimized Dual Classification System for Arabic Extractive Generic Text Summarization
The Seventh Conference on Language Engineering, ECLEC, Cairo Egypt
-
A Trainable Arabic Bayesian Extractive Generic Text Summarizer
The Sixth Conference on Language Engineering, ECLEC, Cairo Egypt
الدورات التعليمية
-
An Introduction to Database Systems, 8th Edition, C.J. Date
-
-
Browser-based Models with TensorFlow.js by deeplearning.ai and Google Brain
F56469GL5HL2
-
Computer Networks, 4th Edition, Andrew S. Tanenbaum
-
-
Configuration Management: QAI
-
-
Cryptography and Network Security, 4th Edition, William Stallings
-
-
Deep Learning
Oxford - 2015
-
Essentials of Rational® RequisitePro® IBM®, Rational® Software
-
-
Essentials of Requirement Management: Quality Assurance Institute (QAI)
-
-
Hidden Markov Models- HMM, A tutorial on hidden Markov models and selected applications, Rabiner
-
-
Human Resource Management
-
-
Image Processing, Analysis, and Machine Vision, 3rd Edition, Sonka
-
-
Integrated Business Skills Training (Amideast)
-
-
Introduction to Big Data with Apache Spark
UC, Berkeleyx - cs100
-
Machine Learning
Stanford University
-
Machine Learning and Data Mining
UBC - CPSC 340
-
Marketing Essentials
-
-
Mastering Requirements IBM®, Rational® Software Management with "Use Cases"
-
-
PMP Exam Preparation
-
-
Partially Observed Markov Decision Process POMDP, KALMAN Filters, Game Theory: Artificial Intelligence, A modern Approach, 2nd Edition
-
-
Proposal Writing
-
-
Scalable Machine Learning
UC, Berkeleyx - cs190
-
Social Networks, Crawling the Web: Discovering Knowledge from Hypertext Data, Chakrabarti. • Probability and Markov Process
-
-
Software Estimation: QAI
-
-
Structured Methods for Software Testing: QAI
-
التكريمات والمكافآت
-
Received "A" Grade for the year 2022
Valeo
-
Inventor 2016-2018 (Medal)
Valeo
#Deeplearning #Technology #Automotive #innovation
-
Senior Expert of AI
Valeo
Machine Learning and Deep Learning
-
Spark ML
OMS Research Department
Successfully completing the course: Introduction to Big Data with Apache Spark
Learn how to apply data science techniques using parallel programming in Apache Spark to explore big (and small) data.
https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x#! -
Excellent Performance and Commitment
RDI www.rdi-eg.com
-
Self learning of pronunciation rules, Speech Recognition Technology, Hafss©
WORLD SUMMIT AWARDS: www.wsis-award.org
-
Microsoft Middle East Developer Conference (MDC), a winner of .NET competition
Microsoft
-
Best Performance, Al Bayan Educational Project (E-Learning)
RDI www.rdi-eg.com
-
General Best Performance Rate
RDI www.rdi-eg.com
-
Best Creativity and inventiveness
RDI www.rdi-eg.com
-
Best Performance, Applying ISO 9001 in Application Development Unit
RDI www.rdi-eg.com
-
A winner of game programming competition
Cairo University, Faculty of Engineering, Computer Science Society (CSS)
نتائج الاختبارات
-
TOEFL
النتيجة: 607
التوصيات المستلمة
15شخصا قدموا توصية لـIbrahim
انضم الآن لعرضالمزيد من أنشطة Ibrahim
-
صورة بالذكاء الاصطناعي Nano Banana Pro: أنا (من صورة البروفايل) أحمل نفسي طفلا (من صورة قديمة لي) ، ومعي السيدة أم كلثوم!
صورة بالذكاء الاصطناعي Nano Banana Pro: أنا (من صورة البروفايل) أحمل نفسي طفلا (من صورة قديمة لي) ، ومعي السيدة أم كلثوم!
تمت المشاركة من قبل Ibrahim Sobh - PhD
-
هل سمعتم عن "Mulder Effect"؟ 🛸 الفكرة دي طلعت من مسلسل The X-Files الشهير! 📺 ⚖️ في علم النفس، المصطلح ده مش رسمي، لكنه بيشير لظاهرة Confirmation…
هل سمعتم عن "Mulder Effect"؟ 🛸 الفكرة دي طلعت من مسلسل The X-Files الشهير! 📺 ⚖️ في علم النفس، المصطلح ده مش رسمي، لكنه بيشير لظاهرة Confirmation…
تمت المشاركة من قبل Ibrahim Sobh - PhD
-
هل تصورتم يومًا إن الـ Vision-Language Models تقدر "تفكر" بالصور مش بس بالكلمات؟ 🧠 الباحثين في UC Berkeley و UCLA و Panasonic AI Research طوروا…
هل تصورتم يومًا إن الـ Vision-Language Models تقدر "تفكر" بالصور مش بس بالكلمات؟ 🧠 الباحثين في UC Berkeley و UCLA و Panasonic AI Research طوروا…
تمت المشاركة من قبل Ibrahim Sobh - PhD
-
هل سمعتم عن الـ Zombie-Facts قبل كده؟ 🧟♂️ دي معلومات غلط بتفضل منتشرة رغم إن العلماء فندوها مرات كتير! زي الـ zombies في الأفلام، المعلومات دي…
هل سمعتم عن الـ Zombie-Facts قبل كده؟ 🧟♂️ دي معلومات غلط بتفضل منتشرة رغم إن العلماء فندوها مرات كتير! زي الـ zombies في الأفلام، المعلومات دي…
تمت المشاركة من قبل Ibrahim Sobh - PhD
ملفات شخصية أخرى مشابهة
أعضاء آخرون يحملون اسم Ibrahim Sobh - PhD في مصر
13 عضو آخر يحملون اسم Ibrahim Sobh - PhD في مصر على LinkedIn
استعرض الأعضاء الآخرين الذين يحملون اسم Ibrahim Sobh - PhD