DataFrame.query

Query the DataFrame by the result of a logical comparison or boolean mask.

danfo.DataFrame.query(kwargs)

Parameters
Type
Description
Default

kwargs

Object

{

condition: A logical boolean mask,

column : str, name of the column

is: Logical operator, one of ">", "<", ">=", "<=", and. "=="

to: Int, Float, Str. Value to compare against,

inplace: boolean. true

false. Whether to perform operation to the original Object or create a new one.

}

Examples

Query a DataFrame using a boolean mask

Querying by a boolean condition is supported from v0.3.0 and above.

const dfd = require("danfojs-node")

let data = {
    "A": ["Ng", "Yu", "Mo", "Ng"],
    "B": [34, 4, 5, 6],
    "C": [20, 20, 30, 40]
}
let df = new dfd.DataFrame(data)
df.print()
let query_df = df.query(df["B"].gt(5))
query_df.print() //after query
╔════════════╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘            β”‚ A                 β”‚ B                 β”‚ C                 β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0          β”‚ Ng                β”‚ 34                β”‚ 20                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€οΏ½οΏ½οΏ½β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 1          β”‚ Yu                β”‚ 4                 β”‚ 20                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 2          β”‚ Mo                β”‚ 5                 β”‚ 30                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3          β”‚ Ng                β”‚ 6                 β”‚ 40                β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

╔════════════╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘            β”‚ A                 β”‚ B                 β”‚ C                 β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0          β”‚ Ng                β”‚ 34                β”‚ 20                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€οΏ½οΏ½οΏ½β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3          β”‚ Ng                β”‚ 6                 β”‚ 40                β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

It also supports condition chaining as long as the final boolean mask is the same length as the DataFrame rows. For example in the following code, we use multiple chaining conditions:

Query a DataFrame using logical operators

This is only supported in older versions. That is versions lower than v1.0.0

To query a DataFrame, you can specify the column to use, the logical operator (">", "<", ">=", "<=", and. "=="), and the value to compare against.

Query by a string column in a DataFrame

This is only supported in older versions. That is versions lower than v1.0.0

The query method also works on string columns.

Last updated

Was this helpful?