Namespaces
Variants
Views
Actions

std::indirectly_writable

From cppreference.com
< cpp‎ | iterator
 
 
Iterator library
Iterator concepts
indirectly_writable
(C++20)
Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)
Iterator adaptors
Range access
(C++11)(C++14)
(C++14)(C++14)  
(C++11)(C++14)
(C++14)(C++14)  
(C++17)(C++20)
(C++17)
(C++17)
 
Defined in header <iterator>
template< class Out, class T >

    concept indirectly_writable =
        requires(Out&& o, T&& t) {
            *o = std::forward<T>(t);
            *std::forward<Out>(o) = std::forward<T>(t);
            const_cast<const std::iter_reference_t<Out>&&>(*o) = std::forward<T>(t);
            const_cast<const std::iter_reference_t<Out>&&>(*std::forward<Out>(o)) =
                std::forward<T>(t);
        };

        /* none of the four expressions above are required to be equality-preserving */
(since C++20)

The concept indirectly_writable<Out, T> specifies the requirements for writing a value whose type and value category are encoded by T into an iterator Out's referenced object.

[edit] Semantic requirements

Let e be an expression such that decltype((e)) is T, and o be a dereferenceable object of type Out, then indirectly_writable<Out, T> is modeled only if:

o is not required to be dereferenceable after evaluating any of the assignment expressions above. If e is an xvalue, the resulting state of the object it denotes is valid but unspecified.

[edit] Equality preservation

Expressions declared in requires expressions of the standard library concepts are required to be equality-preserving (except where stated otherwise).

[edit] Notes

The only valid use of operator* is on the left side of an assignment expression. Assignment through the same value of an indirectly writable type may happen only once.

The required expressions with const_cast prevent indirectly_readable objects with prvalue reference types from satisfying the syntactic requirements of indirectly_writable by accident, while permitting proxy references to continue to work as long as their constness is shallow. See Ranges TS issue 381.

struct Object
{
    Object& operator=(const Object& other) = default;
 
    int x;
};
 
struct ProxyReference
{
    ProxyReference& operator=(const ProxyReference& other) = default;
 
    const ProxyReference& operator=(const Object& o) const
    {
        *p = o;
        return *this;
    }
 
    Object* p;
};
 
struct I1 { Object& operator*(); };
 
struct I2 { Object operator*(); };
 
struct I3 { ProxyReference operator*(); };
 
static_assert(std::indirectly_writable<I1, Object>);
static_assert(!std::indirectly_writable<I2, Object>);
static_assert(std::indirectly_writable<I3, Object>);
static_assert(!std::indirectly_writable<I3, ProxyReference>);
 
void f(I1 i1, I2 i2, I3 i3, Object o)
{
    *i1 = o;  // OK, assigns to the value referenced by *i1
 
    *i2 = o;  // OK, but meaningless: This assigns to the temporary returned by *i2
 
    *i3 = o;  // OK, calls ProxyReference::operator=(const Object& o) const
              // which performs *ptr = o, where ptr is (*i3).p
}