ABSTRACT

Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al

chapter Chapter 1|23 pages

Simulating Evolution: Basics about Genetic Algorithms

Title
Size: 0.40 MB

chapter Chapter 2|39 pages

Evolving Programs: Genetic Programming

Title
Size: 0.67 MB

chapter Chapter 3|4 pages

Problems and Success Factors

Title
Size: 0.11 MB

chapter Chapter 4|10 pages

Preservation of Relevant Building Blocks

Title
Size: 0.25 MB

chapter Chapter 5|10 pages

SASEGASA – More than the Sum of All Parts

Title
Size: 0.23 MB

chapter Chapter 6|8 pages

Analysis of Population Dynamics

Title
Size: 0.27 MB

chapter Chapter 7|23 pages

Characteristics of Offspring Selection and the RAPGA

Title
Size: 1.76 MB

chapter Chapter 8|35 pages

Combinatorial Optimization: Route Planning

Title
Size: 0.64 MB

chapter Chapter 9|50 pages

Evolutionary System Identification

Title
Size: 0.84 MB

chapter Chapter 10|28 pages

Applications of Genetic Algorithms: Combinatorial Optimization

Title
Size: 0.67 MB

chapter Chapter 11|86 pages

Data-Based Modeling with Genetic Programming

Title
Size: 2.92 MB

chapter |4 pages

Conclusion and Outlook

Title
Size: 0.11 MB