Large Eddy Simulation
Reynolds Number
General Equation:
U = fluid speed
L = Characteristic Length
ν = Kinematic Viscosity
Where:
Re =
U ⋅ L
ν
Examples
Soccer Ball ≈ 1e5
Falcon ≈ 1e6
(at 200mph)
Airplane ≈ 2e7
Boeing 747 ≈ 6e8
Pre-Smagorinski
 DNS - Direct Numerical Simulation
 Very accurate, but very costly
 RANS - Reynolds Averaged NS
 Very fast, but loses transient features
 Experimentally driven approximation
(Empirical Methods)
DNS - Direct Numerical Simulation
Acceleration of Fluid Particle
dU =
∂U
∂xi
dxi +
∂U
∂x j
dx j +
∂U
∂xk
dxk +
∂U
∂t
dt
An infinitesimal change of spatial velocity of a fluid particle is:
The acceleration is therefore
dU
dt
=
∂U
∂xi
dxi
dt
+
∂U
∂x j
dx j
dt
+
∂U
∂xk
dxk
dt
+
∂U
∂t
dt
dt
=
∂U
∂x1
U1 +
∂U
∂x2
U2 +
∂U
∂x3
U3 +
∂U
∂t
=∂tU +Ui∂xi
U j =∂tU +∂xi
U jUi( )
Substantial Derivative
Spatial Change of Velocity:
DU
Dt
=
∂U
∂x1
U1 +
∂U
∂x2
U2 +
∂U
∂x3
U3 +
∂U
∂t
Spatial Change of Vector Property A
D
Dt
A( ) =∂t A +∂xi
AjUi( )
D
Dt
A( ) =
∂A
∂t
+ U ⋅ ∇( )A
or
Conservation of Mass
Conservation of Mass
d
dt
M( )
system
= 0 ⇒ η =1
∂
∂t
ρ⋅ dV
CV
∫ + ρ ˜U ⋅ d ˜A
CS
∫ = 0
∂
∂t
dV
CV
∫ + ˜U ⋅ d ˜A
CS
∫ = 0
˜U ⋅ d ˜A
CS
∫ = 0
˜U ⋅ d ˜A
CS
∫ = ∇ • ˜U( )dV
CV
∫ = 0
CV form (via RTT)
Incompressibility
(constant density)
Harmonic BC
(const shape & vol)
Divergence Theorem
Continuity
(continued)
∇ • ˜U( )dV
CV
∫ = 0
∇ • ˜U( ) = ˜A
A =
1
V
˜A⋅ dV
parcel
∫
∇ • ˜U( )dV
CV
∫ = ∇ • U( ) CV
= 0
lim
CV →δ
∇ • U( ) CV
= ∇ • ˜U( )
Change of Variable
Mean Value Thm
Substitute and Simplify
Take the Limit
Continuity Equation ∇ • ˜U = 0
Force Tensor
Note:
This same derivation informs
Solid Deformation, Convective
and Conductive Heat Transfer
and Mass Transfer.
Newtonian Shear
Viscosity Assumptions:
• Linear
• Isotropic
• Homogenous
• Constant Value
Momentum
d ˜F = dm
D ˜U
Dt
⇒
d ˜F
dV
= ρ
D ˜U
Dt
Definition of Momentum
Momentum along 1 axis
∂σ11
∂x1
+
∂τ12
∂x1
+
∂τ13
∂x1
⎛
⎝
⎜
⎞
⎠
⎟= ρ
∂U1
∂x1
U1 +
∂U1
∂x2
U2 +
∂U1
∂x3
U3 +
∂U1
∂t
⎛
⎝
⎜
⎞
⎠
⎟
Generalized Momentum
∂xi
˜Fij = ρ Ui∂xi
U j +∂tUi( )
Momentum (cont)
Momentum
ρ Ui∂xi
U j +∂tUi( ) =∂xi
˜Fij
Shear
ρ
∂ ˜U
∂t
+ ρ ˜U ⋅ ∇( ) ˜U = −
∇p
ρ
+ μ∇ 2 ˜U
ρ = constant
μ = constant
⇒ ν =
μ
ρ
= constant
Navier Stokes Equations
Momentum Equation Continuity Equation
∂ ˜U
∂t
+ ˜U • ∇( ) ˜U −ν∇ 2 ˜U +
∇p
ρ
= 0 ∇ ⋅ ˜U = 0
Assumptions:
• Continuum Hypothesis
• Ideal Gas, Perfect Caloric Gas
• Steady, Homogenous, Isotropic, nonzero, finite:
• density, viscosity, thermal conductivity, specific heats
Energy Equation
ρ
∂e
∂t
+ ˜U • ∇( )e =
∂Q
∂t
+ k∇ 2
T + Φ
Calorically perfect ideal gas
p = γ −1( )ρe
T =
γ −1( )e
R
Navier Stokes Closure
Number of Equations:
• Continuity = 1
• Momentum = 3
• Energy =1
• Cal. Perf. Ideal Gas =2
Total is 7
Number of Unknowns:
• density
•Pressure
•Energy
•Temperature
• velocity in x-direction
• velocity in y-direction
• velocity in z - direction
Total is 7
Number of Equations = Number of Unknowns
Therefore this is a closed system
DNS Order
Required Fourier Modes (per direction):
N ≈1.6
L
η
⎛
⎝
⎜
⎞
⎠
⎟=1.6⋅ ReL
3
4 ≈ 0.4Rλ
3
4
Required Fourier Modes (3-space):
N3
≈ 0.06⋅ Reλ
9
4
Required Floating Point Operations
Ops ≈ O N3
[ ]
3
( )
DNS Computability
Soccer Ball ≈ 1.5e36
Falcon ≈ 1.4e42
(at 200mph)
Airplane ≈ 3.8e48
Boeing 747 ≈ 3.7e59
Implications (operations*): Implications (years**):
Soccer Ball ≈ 4.9e16
Falcon ≈ 4.4e22
(at 200mph)
Airplane ≈ 1.2e29
Boeing 747 ≈ 1.1e40
*Assuming a Teraflop computer ** Age of the universe ~ 15e9 years
DNS applied to engineering problems:
Totally Accurate
Very Computationally Intensive
RANS - Averaged Navier Stokes
Reynolds Decomposition
U
v
x,t( ) = U
v
x,t( ) +
v
u
v
x,t( )
Velocity = Mean + Deviatoric
where
U = lim
T → ∞
1
T
U ⋅ dt
0
T
∫
This is familiar.
Reynolds Continuity
Standard Conservation of Mass (Continuity)
In terms of Reynold Decomposition
∇ •U = 0
∇ • u + U( ) = 0
⇒ ∇ • u = 0
⇒ ∇ • U = 0
Mean OF Substantial Derivative
but
UiU j = Ui U j + uiuj
therefore
∂
∂xi
UiU j =∂xi
Ui U j + uiuj( )
= Ui ∂xi
U j + U j ∂xi
Ui +∂xi
uiuj
= Ui ∂xi
U j +∂xi
uiuj
D
Dt
U j =
∂ U j
∂t
+
∂
∂xi
UiU j
The mean is
Finally
D
Dt
U j =
∂ U j
∂t
+ Ui
∂ U j
∂xi
+
∂ uiuj
∂xi
Remembering
∇ • U =∂xi
Ui = 0
Mean of Nonlinear Term
UiU j = Ui + ui( )⋅ U j + uj( )
= Ui U j + U j ui + Ui uj + uiuj
= Ui U j + uiuj
The mean is
Because
U j ui = U j ⋅ lim
T → ∞
1
T
ui ⋅ dt
0
T
∫ = U j ⋅ 0 = 0
Ui uj = Ui ⋅ lim
T → ∞
1
T
uj ⋅ dt
0
T
∫ = Ui ⋅ 0 = 0
Mean-Substantial Derivative
The Mean OF the Substantial Derivitave
D
Dt
U j =
∂ U j
∂t
+ Ui
∂ U j
∂xi
+
∂ uiuj
∂xi
Therefore the Mean-Substantial Derivative is
D
Dt
=
∂
∂t
+ Ui
∂
∂xi
or
D
Dt
=
∂
∂t
+ Ui • ∇
Mean Momentum
DU j
Dt
=
DU j
Dt
+∂xi
uiuj
⇒ ν∇ 2
U j −
∂xi
p
ρ
=
DU j
Dt
+∂xi
uiuj
⇒
DU j
Dt
=ν∇ 2
U j −
∂xi
p
ρ
−∂xi
uiuj
Alternate Mean Momentum
Consider the following
DU j
Dt
=ν∇ 2
U j −
∂xi
p
ρ
−∂xi
uiuj
⇒ ρ
DU j
Dt
=∂xi
μ ∂x j
Ui +∂xi
U j( ) + p δij − ρ uiuj( )
Where
δij =
0, i ≠ j
1, i = j
⎧
⎨
⎩
⎫
⎬
⎭
uiuj =
u1u1 u1u2 u1u3
u2u1 u2u2 u2u3
u3u1 u3u2 u3u3
⎡
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
Boussinesq Idea
Boussinesq (1877) suggested that
Deviatoric Reynolds Stress is
proportional to Mean Rate of Strain
uiuj =
2
3
kδij −2νT Sij
Sij =
∂x j
Ui +∂xi
U j
2
Where Strain is:
While is called:νT
Eddy Viscosity
Or Turbulent Viscosity
Stress = constant x Strain
And k =
1
2
uiui
Or
The only term capable of transporting momentum is the AN-isotropic
stress component, therefore the isotropic terms are unscaled.
Time-Averaged Navier Stokes
Time Averaged Reynolds Stress
• Very accurate for mean behavior
• Apply to High Reynolds Number flows
• Inapplicable to transient flows
time-dependent solution is destroyed by averaging
DU j
Dt
=∂xi
νeff ∂x j
Ui +∂xi
U j( ) +
∂x j
ρ
p − 3ρk( )
⎛
⎝
⎜
⎞
⎠
⎟
νeff =ν +νT
˜x,t( )
LES - Large Eddy Simulation
Smagorinski Idea
Smagorinski suggested a multi-model approach:
1. Numeric Solution for Large Scales
• Grid Scale (GS) = Grid Size or Larger
2. Statistical Parametrization for Small Scales
• Sub-Grid Scale is Smaller than Grid
Size
Range: Inertial Dissipative
80%Energy:
k
20%
Model: Simulate Parametrize
Resolve 80%
+ Guess 20%
Less CPU use
Show transient
phenomenology
Balance of Momentum
D U j
Dt
=ν∇ 2
U j −
∂xi
p
ρ
−∂xi
uiuj
∂xi
uiuj → ∂xi
τ ij
R
D U j
Dt
=ν∇ 2
U j −
∂xi
p
ρ
−∂xi
τ ij
R
Averaged Momentum
Notation Change
Useful Expression
Large Scale Modelling Looks like Time Averaged.
Viscosity Parametrization
τij
r
= −2νT Sij
νT = l s
2
S
l s
2
= Cs ⋅ Δ( )
νT = CsΔ( )S
Boussinesq Idea
(eddy viscosity)
Define Eddy viscosity as a function of characteristic filtered rate of strain.
Smagorinski
Length
Smagorinski
Coefficient
Filter WidthEddy Viscosity
(continued)
λs =
Δ
Ck ⋅ af
⋅
S3
S2
3
2
⎛
⎝
⎜
⎜
⎜
⎞
⎠
⎟
⎟
⎟
−1
2
af ≡ 2 kΔ( )
1
3 ˆG κ( )
2
Δ⋅ dκ∫
S2
= af Ckε
2
3
Δ
−4
3
Smagorinski Length
Filter Dependent
Parameter
Approximate
Characteristic Filtered
Rate of Strain
Example (Lilly 1967)
Assumed:
• Filtered Strain Rate can
be determined from the
Kolmogorov Spectrum
using Equation 1.
• A Sharp Spectral Filter
is used as the filtering
function.
(1) S3
≈ S2
3
2
(2) CS =
l S
Δ
=
1
π
2
3Ck
⎛
⎝
⎜
⎞
⎠
⎟
3
4
≈ 0.17
(3) νT = 0.17⋅ Δ( )⋅ S
Energy Implication
P ≡νT S2
Rate of Transfer of Energy
The mean strain is always positive.
For all positive viscosity values there is
unidirectional transfer.
There is no backscatter.
Computational Issues
Strengths
• Less CPU Overhead
than DNS
• Performs at High
Reynolds Numbers
• Retains Transient
Phenomena
Weaknesses
• No Backscatter
• Poor performance at
boundaries (walls)
• Over-predicts losses for
Inhomogenous turbulent
flows
LES Computability
Soccer Ball ≈ 9.0e28
Falcon ≈ 5.2e33
(at 200mph)
Airplane ≈ 7.4e38
Boeing 747 ≈ 4.5e47
Implications (operations*): Implications (years**):
Soccer Ball ≈ 2.8e9
Falcon ≈ 1.6e14
(at 200mph)
Airplane ≈ 2.3e19
Boeing 747 ≈ 1.4e28
*Assuming a Teraflop computer ** Age of the universe ~ 15e9 years
NOW: the soccer ball can be mostly characterized in
UNDER the age of the universe! That’s a change
of 7 orders of magnitude!
Bibliography
Lumley. J. L., Yaglom. A. M., (March 2001) A Century of
Turbulence. Flow, Turbulence, and Combustion, 66, 241-286
Fox, McDonald, and Pritchard (2004) Introduction to Fluid
Mechanics. John Wiley & Sons
Pope. S. B. (2000). Turbulent Flows. Cambridge: University Press
Tannehill. J. C., Anderson. D. A., Pletcher. R. H. (1997)
Computational Fluid Mechanics and Heat Transfer (2nd ed).
Washington: Taylor & Francis Publishers
Yoshizawa. A. (1998) Hydrodynamic and Magnetohydrodynamic
Turbulent Flows: Modeling and Statistical Theory. Fluid
Mechanics and Its Applications. (Vol. 48). Boston: Kluwer
Academic Publishers
Any Questions?
Observation
The dissipative region undergoes a transformation in
phenomenology when k is ~ kc/10.
Heisenberg
∆t ⋅ ΔE ≥
h
2
Δt =
L2
ν
ΔE =
1
2
Iω2
I =
1
2
mr2
=
1
2
ρL2 L
2
⎛
⎝
⎜
⎞
⎠
⎟
2
Heisenberg
Frisch (pp103)
Ang. Mom.
Mom. Of Inertia
Substitution
ω2
=
2πr
U
U =
L
ν
r =
1
2
L
ω2
= 2π
L
2
ν
L
⎛
⎝
⎜
⎞
⎠
⎟
2
Ang. Vel.
Velocity
Radius
Ang. Vel.
Finally
ρνπ 2
L6
8
≥
h
2
Heisenberg vs Kolmogorov
ρνπ 2
LH
6
4
≥ h ⇒ LH ≥
4h
ρνπ2
⎛
⎝
⎜
⎞
⎠
⎟
1
6
Re≈1 @ Kc
Conclusion: Heisenberg can be within one decade from Kolmogorov
name rho nu Lh (µµ) Λκ ( µµ) Λη/Λκ
ηγ−273κ 13595 0.000000124 7.2 6.61 1.10
ν2−100κ 3.4388 0.000002 18.1 53.18 0.34
αιρ−100κ 3.5562 0.000002 18.0 53.18 0.34
χο−200κ 1.6888 0.00000752 16.4 143.60 0.11
χο2−280κ 1.9022 0.00000736 16.1 141.31 0.11
η2−100κ 0.24255 0.0000174 19.7 269.41 0.07
νη3−300κ 0.6894 0.0000147 17.0 237.40 0.07
αιρ−300κ 1.1614 0.00001589 15.4 251.68 0.06
ηε−100κ 0.4871 0.0000198 17.1 296.82 0.06
η20−380κ 0.5863 0.00002168 16.4 317.72 0.05
Relevant Phenomena
 Tunneling
 Matter
 Energy
 Condensates
 Implosion
 Explosions (Bosenova)
 Radical Change of model

LES from first principles

  • 1.
  • 2.
    Reynolds Number General Equation: U= fluid speed L = Characteristic Length ν = Kinematic Viscosity Where: Re = U ⋅ L ν Examples Soccer Ball ≈ 1e5 Falcon ≈ 1e6 (at 200mph) Airplane ≈ 2e7 Boeing 747 ≈ 6e8
  • 3.
    Pre-Smagorinski  DNS -Direct Numerical Simulation  Very accurate, but very costly  RANS - Reynolds Averaged NS  Very fast, but loses transient features  Experimentally driven approximation (Empirical Methods)
  • 4.
    DNS - DirectNumerical Simulation
  • 5.
    Acceleration of FluidParticle dU = ∂U ∂xi dxi + ∂U ∂x j dx j + ∂U ∂xk dxk + ∂U ∂t dt An infinitesimal change of spatial velocity of a fluid particle is: The acceleration is therefore dU dt = ∂U ∂xi dxi dt + ∂U ∂x j dx j dt + ∂U ∂xk dxk dt + ∂U ∂t dt dt = ∂U ∂x1 U1 + ∂U ∂x2 U2 + ∂U ∂x3 U3 + ∂U ∂t =∂tU +Ui∂xi U j =∂tU +∂xi U jUi( )
  • 6.
    Substantial Derivative Spatial Changeof Velocity: DU Dt = ∂U ∂x1 U1 + ∂U ∂x2 U2 + ∂U ∂x3 U3 + ∂U ∂t Spatial Change of Vector Property A D Dt A( ) =∂t A +∂xi AjUi( ) D Dt A( ) = ∂A ∂t + U ⋅ ∇( )A or
  • 7.
    Conservation of Mass Conservationof Mass d dt M( ) system = 0 ⇒ η =1 ∂ ∂t ρ⋅ dV CV ∫ + ρ ˜U ⋅ d ˜A CS ∫ = 0 ∂ ∂t dV CV ∫ + ˜U ⋅ d ˜A CS ∫ = 0 ˜U ⋅ d ˜A CS ∫ = 0 ˜U ⋅ d ˜A CS ∫ = ∇ • ˜U( )dV CV ∫ = 0 CV form (via RTT) Incompressibility (constant density) Harmonic BC (const shape & vol) Divergence Theorem
  • 8.
    Continuity (continued) ∇ • ˜U()dV CV ∫ = 0 ∇ • ˜U( ) = ˜A A = 1 V ˜A⋅ dV parcel ∫ ∇ • ˜U( )dV CV ∫ = ∇ • U( ) CV = 0 lim CV →δ ∇ • U( ) CV = ∇ • ˜U( ) Change of Variable Mean Value Thm Substitute and Simplify Take the Limit Continuity Equation ∇ • ˜U = 0
  • 9.
    Force Tensor Note: This samederivation informs Solid Deformation, Convective and Conductive Heat Transfer and Mass Transfer.
  • 10.
    Newtonian Shear Viscosity Assumptions: •Linear • Isotropic • Homogenous • Constant Value
  • 11.
    Momentum d ˜F =dm D ˜U Dt ⇒ d ˜F dV = ρ D ˜U Dt Definition of Momentum Momentum along 1 axis ∂σ11 ∂x1 + ∂τ12 ∂x1 + ∂τ13 ∂x1 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟= ρ ∂U1 ∂x1 U1 + ∂U1 ∂x2 U2 + ∂U1 ∂x3 U3 + ∂U1 ∂t ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ Generalized Momentum ∂xi ˜Fij = ρ Ui∂xi U j +∂tUi( )
  • 12.
    Momentum (cont) Momentum ρ Ui∂xi Uj +∂tUi( ) =∂xi ˜Fij Shear ρ ∂ ˜U ∂t + ρ ˜U ⋅ ∇( ) ˜U = − ∇p ρ + μ∇ 2 ˜U ρ = constant μ = constant ⇒ ν = μ ρ = constant
  • 13.
    Navier Stokes Equations MomentumEquation Continuity Equation ∂ ˜U ∂t + ˜U • ∇( ) ˜U −ν∇ 2 ˜U + ∇p ρ = 0 ∇ ⋅ ˜U = 0 Assumptions: • Continuum Hypothesis • Ideal Gas, Perfect Caloric Gas • Steady, Homogenous, Isotropic, nonzero, finite: • density, viscosity, thermal conductivity, specific heats Energy Equation ρ ∂e ∂t + ˜U • ∇( )e = ∂Q ∂t + k∇ 2 T + Φ Calorically perfect ideal gas p = γ −1( )ρe T = γ −1( )e R
  • 14.
    Navier Stokes Closure Numberof Equations: • Continuity = 1 • Momentum = 3 • Energy =1 • Cal. Perf. Ideal Gas =2 Total is 7 Number of Unknowns: • density •Pressure •Energy •Temperature • velocity in x-direction • velocity in y-direction • velocity in z - direction Total is 7 Number of Equations = Number of Unknowns Therefore this is a closed system
  • 15.
    DNS Order Required FourierModes (per direction): N ≈1.6 L η ⎛ ⎝ ⎜ ⎞ ⎠ ⎟=1.6⋅ ReL 3 4 ≈ 0.4Rλ 3 4 Required Fourier Modes (3-space): N3 ≈ 0.06⋅ Reλ 9 4 Required Floating Point Operations Ops ≈ O N3 [ ] 3 ( )
  • 16.
    DNS Computability Soccer Ball≈ 1.5e36 Falcon ≈ 1.4e42 (at 200mph) Airplane ≈ 3.8e48 Boeing 747 ≈ 3.7e59 Implications (operations*): Implications (years**): Soccer Ball ≈ 4.9e16 Falcon ≈ 4.4e22 (at 200mph) Airplane ≈ 1.2e29 Boeing 747 ≈ 1.1e40 *Assuming a Teraflop computer ** Age of the universe ~ 15e9 years DNS applied to engineering problems: Totally Accurate Very Computationally Intensive
  • 17.
    RANS - AveragedNavier Stokes
  • 18.
    Reynolds Decomposition U v x,t( )= U v x,t( ) + v u v x,t( ) Velocity = Mean + Deviatoric where U = lim T → ∞ 1 T U ⋅ dt 0 T ∫ This is familiar.
  • 19.
    Reynolds Continuity Standard Conservationof Mass (Continuity) In terms of Reynold Decomposition ∇ •U = 0 ∇ • u + U( ) = 0 ⇒ ∇ • u = 0 ⇒ ∇ • U = 0
  • 20.
    Mean OF SubstantialDerivative but UiU j = Ui U j + uiuj therefore ∂ ∂xi UiU j =∂xi Ui U j + uiuj( ) = Ui ∂xi U j + U j ∂xi Ui +∂xi uiuj = Ui ∂xi U j +∂xi uiuj D Dt U j = ∂ U j ∂t + ∂ ∂xi UiU j The mean is Finally D Dt U j = ∂ U j ∂t + Ui ∂ U j ∂xi + ∂ uiuj ∂xi Remembering ∇ • U =∂xi Ui = 0
  • 21.
    Mean of NonlinearTerm UiU j = Ui + ui( )⋅ U j + uj( ) = Ui U j + U j ui + Ui uj + uiuj = Ui U j + uiuj The mean is Because U j ui = U j ⋅ lim T → ∞ 1 T ui ⋅ dt 0 T ∫ = U j ⋅ 0 = 0 Ui uj = Ui ⋅ lim T → ∞ 1 T uj ⋅ dt 0 T ∫ = Ui ⋅ 0 = 0
  • 22.
    Mean-Substantial Derivative The MeanOF the Substantial Derivitave D Dt U j = ∂ U j ∂t + Ui ∂ U j ∂xi + ∂ uiuj ∂xi Therefore the Mean-Substantial Derivative is D Dt = ∂ ∂t + Ui ∂ ∂xi or D Dt = ∂ ∂t + Ui • ∇
  • 23.
    Mean Momentum DU j Dt = DUj Dt +∂xi uiuj ⇒ ν∇ 2 U j − ∂xi p ρ = DU j Dt +∂xi uiuj ⇒ DU j Dt =ν∇ 2 U j − ∂xi p ρ −∂xi uiuj
  • 24.
    Alternate Mean Momentum Considerthe following DU j Dt =ν∇ 2 U j − ∂xi p ρ −∂xi uiuj ⇒ ρ DU j Dt =∂xi μ ∂x j Ui +∂xi U j( ) + p δij − ρ uiuj( ) Where δij = 0, i ≠ j 1, i = j ⎧ ⎨ ⎩ ⎫ ⎬ ⎭ uiuj = u1u1 u1u2 u1u3 u2u1 u2u2 u2u3 u3u1 u3u2 u3u3 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
  • 25.
    Boussinesq Idea Boussinesq (1877)suggested that Deviatoric Reynolds Stress is proportional to Mean Rate of Strain uiuj = 2 3 kδij −2νT Sij Sij = ∂x j Ui +∂xi U j 2 Where Strain is: While is called:νT Eddy Viscosity Or Turbulent Viscosity Stress = constant x Strain And k = 1 2 uiui Or The only term capable of transporting momentum is the AN-isotropic stress component, therefore the isotropic terms are unscaled.
  • 26.
    Time-Averaged Navier Stokes TimeAveraged Reynolds Stress • Very accurate for mean behavior • Apply to High Reynolds Number flows • Inapplicable to transient flows time-dependent solution is destroyed by averaging DU j Dt =∂xi νeff ∂x j Ui +∂xi U j( ) + ∂x j ρ p − 3ρk( ) ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ νeff =ν +νT ˜x,t( )
  • 27.
    LES - LargeEddy Simulation
  • 28.
    Smagorinski Idea Smagorinski suggesteda multi-model approach: 1. Numeric Solution for Large Scales • Grid Scale (GS) = Grid Size or Larger 2. Statistical Parametrization for Small Scales • Sub-Grid Scale is Smaller than Grid Size Range: Inertial Dissipative 80%Energy: k 20% Model: Simulate Parametrize Resolve 80% + Guess 20% Less CPU use Show transient phenomenology
  • 29.
    Balance of Momentum DU j Dt =ν∇ 2 U j − ∂xi p ρ −∂xi uiuj ∂xi uiuj → ∂xi τ ij R D U j Dt =ν∇ 2 U j − ∂xi p ρ −∂xi τ ij R Averaged Momentum Notation Change Useful Expression Large Scale Modelling Looks like Time Averaged.
  • 30.
    Viscosity Parametrization τij r = −2νTSij νT = l s 2 S l s 2 = Cs ⋅ Δ( ) νT = CsΔ( )S Boussinesq Idea (eddy viscosity) Define Eddy viscosity as a function of characteristic filtered rate of strain. Smagorinski Length Smagorinski Coefficient Filter WidthEddy Viscosity
  • 31.
    (continued) λs = Δ Ck ⋅af ⋅ S3 S2 3 2 ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ −1 2 af ≡ 2 kΔ( ) 1 3 ˆG κ( ) 2 Δ⋅ dκ∫ S2 = af Ckε 2 3 Δ −4 3 Smagorinski Length Filter Dependent Parameter Approximate Characteristic Filtered Rate of Strain
  • 32.
    Example (Lilly 1967) Assumed: •Filtered Strain Rate can be determined from the Kolmogorov Spectrum using Equation 1. • A Sharp Spectral Filter is used as the filtering function. (1) S3 ≈ S2 3 2 (2) CS = l S Δ = 1 π 2 3Ck ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 3 4 ≈ 0.17 (3) νT = 0.17⋅ Δ( )⋅ S
  • 33.
    Energy Implication P ≡νTS2 Rate of Transfer of Energy The mean strain is always positive. For all positive viscosity values there is unidirectional transfer. There is no backscatter.
  • 34.
    Computational Issues Strengths • LessCPU Overhead than DNS • Performs at High Reynolds Numbers • Retains Transient Phenomena Weaknesses • No Backscatter • Poor performance at boundaries (walls) • Over-predicts losses for Inhomogenous turbulent flows
  • 35.
    LES Computability Soccer Ball≈ 9.0e28 Falcon ≈ 5.2e33 (at 200mph) Airplane ≈ 7.4e38 Boeing 747 ≈ 4.5e47 Implications (operations*): Implications (years**): Soccer Ball ≈ 2.8e9 Falcon ≈ 1.6e14 (at 200mph) Airplane ≈ 2.3e19 Boeing 747 ≈ 1.4e28 *Assuming a Teraflop computer ** Age of the universe ~ 15e9 years NOW: the soccer ball can be mostly characterized in UNDER the age of the universe! That’s a change of 7 orders of magnitude!
  • 36.
    Bibliography Lumley. J. L.,Yaglom. A. M., (March 2001) A Century of Turbulence. Flow, Turbulence, and Combustion, 66, 241-286 Fox, McDonald, and Pritchard (2004) Introduction to Fluid Mechanics. John Wiley & Sons Pope. S. B. (2000). Turbulent Flows. Cambridge: University Press Tannehill. J. C., Anderson. D. A., Pletcher. R. H. (1997) Computational Fluid Mechanics and Heat Transfer (2nd ed). Washington: Taylor & Francis Publishers Yoshizawa. A. (1998) Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modeling and Statistical Theory. Fluid Mechanics and Its Applications. (Vol. 48). Boston: Kluwer Academic Publishers
  • 37.
  • 39.
    Observation The dissipative regionundergoes a transformation in phenomenology when k is ~ kc/10.
  • 40.
    Heisenberg ∆t ⋅ ΔE≥ h 2 Δt = L2 ν ΔE = 1 2 Iω2 I = 1 2 mr2 = 1 2 ρL2 L 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2 Heisenberg Frisch (pp103) Ang. Mom. Mom. Of Inertia Substitution ω2 = 2πr U U = L ν r = 1 2 L ω2 = 2π L 2 ν L ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2 Ang. Vel. Velocity Radius Ang. Vel. Finally ρνπ 2 L6 8 ≥ h 2
  • 41.
    Heisenberg vs Kolmogorov ρνπ2 LH 6 4 ≥ h ⇒ LH ≥ 4h ρνπ2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 1 6 Re≈1 @ Kc Conclusion: Heisenberg can be within one decade from Kolmogorov name rho nu Lh (µµ) Λκ ( µµ) Λη/Λκ ηγ−273κ 13595 0.000000124 7.2 6.61 1.10 ν2−100κ 3.4388 0.000002 18.1 53.18 0.34 αιρ−100κ 3.5562 0.000002 18.0 53.18 0.34 χο−200κ 1.6888 0.00000752 16.4 143.60 0.11 χο2−280κ 1.9022 0.00000736 16.1 141.31 0.11 η2−100κ 0.24255 0.0000174 19.7 269.41 0.07 νη3−300κ 0.6894 0.0000147 17.0 237.40 0.07 αιρ−300κ 1.1614 0.00001589 15.4 251.68 0.06 ηε−100κ 0.4871 0.0000198 17.1 296.82 0.06 η20−380κ 0.5863 0.00002168 16.4 317.72 0.05
  • 42.
    Relevant Phenomena  Tunneling Matter  Energy  Condensates  Implosion  Explosions (Bosenova)  Radical Change of model

Editor's Notes

  • #35 Because the assumption of homogenous turbulence, the inhomogenous turbulence at walls is poorly described by this method.