How Python 3.14's new features boost CPU performance

This title was summarized by AI from the post below.

𝗣𝘆𝘁𝗵𝗼𝗻 𝗰𝗮𝗻 𝗳𝗶𝗻𝗮𝗹𝗹𝘆 𝘂𝘀𝗲 𝗮𝗹𝗹 𝘆𝗼𝘂𝗿 𝗖𝗣𝗨 𝗰𝗼𝗿𝗲𝘀. For years, the Global Interpreter Lock (𝗚𝗜𝗟) was Python’s biggest limitation for CPU-bound tasks. Even if you had 8 cores, only one thread could truly execute Python code at a time, others just waited for their turn. Now, with 𝗣𝘆𝘁𝗵𝗼𝗻 𝟯.𝟭𝟰, that changes. The new free-threaded (no-GIL) interpreter finally lets multiple threads run Python code simultaneously, even for CPU-heavy workloads. So what actually changed inside 𝗖𝗣𝘆𝘁𝗵𝗼𝗻 to make this possible? Let’s look at the differences. 𝗢𝗯𝗷𝗲𝗰𝘁 𝗹𝗶𝗳𝗲𝘁𝗶𝗺𝗲: • 𝗢𝗹𝗱: One thread at a time, refcounts were safe by default. • 𝗡𝗲𝘄: Refcounts are atomic. Common objects like None and True are immortal, no locking, no slowdown. 𝗟𝗼𝗰𝗸𝗶𝗻𝗴 𝘀𝘁𝗿𝗮𝘁𝗲𝗴𝘆: • 𝗢𝗹𝗱: One giant GIL for everything. • 𝗡𝗲𝘄: Many tiny locks. Each subsystem guards itself like type caches, allocators, GC. Threads finally run side by side. 𝗚𝗮𝗿𝗯𝗮𝗴𝗲 𝗰𝗼𝗹𝗹𝗲𝗰𝘁𝗶𝗼𝗻: • 𝗢𝗹𝗱: Stop the world, clean up, resume. • 𝗡𝗲𝘄: Each generation has its own lock. GC can quietly run while your code keeps executing. 𝗜𝗻𝘁𝗲𝗿𝗽𝗿𝗲𝘁𝗲𝗿 𝘀𝘁𝗮𝘁𝗲: • 𝗢𝗹𝗱: Shared global state like builtins, modules, caches all tangled together. • 𝗡𝗲𝘄: Each interpreter has isolated state. Subinterpreters can run truly in parallel. 𝗖 𝗲𝘅𝘁𝗲𝗻𝘀𝗶𝗼𝗻𝘀: • 𝗢𝗹𝗱: Every extension assumed the GIL existed. • 𝗡𝗲𝘄: A new free-threaded C API + atomic helpers make extensions thread-safe again. 𝗣𝗲𝗿𝗳𝗼𝗿𝗺𝗮𝗻𝗰𝗲: • 𝗢𝗹𝗱: One thread per process, no matter how many cores. • 𝗡𝗲𝘄: Slightly slower single-thread, but real parallel speedups for CPU-bound workloads. Now, Python can finally breathe across all cores. — 𝐏𝐲𝐂𝐨𝐝𝐞𝐓𝐞𝐜𝐡 #Python

To view or add a comment, sign in

Explore content categories