Check Reflexive Relation on Set
A relation is a subset of the cartesian product of a set with another set. A relation contains ordered pairs of elements of the set it is defined on. To learn more about relations refer to the article on "Relation and their types".
What is a Reflexive Relation?
A relation R on a set A is called reflexive relation if
(a, a) ∈ R ∀ a ∈ A, i.e. aRa for all a ∈ A,
where R is a subset of (A x A), i.e. the cartesian product of set A with itself.
This means if element "a" is present in set A, then a relation "a" to "a" (aRa) should be present in relation R. If any such aRa is not present in R then R is not a reflexive relation.
A reflexive relation is denoted as:
IA = {(a, a): a ∈ A}
Example:
Consider set A = {a, b} and R = {(a, a), (b, b)}.
Here R is a reflexive relation as for both a and b, aRa and bRb are present in the set.
Properties of a Reflexive Relation
- Empty relation on a non-empty relation set is never reflexive.
- Relation defined on an empty set is always reflexive.
- Universal relation defined on any set is always reflexive.
How to verify a Reflexive Relation?
The process of identifying/verifying if any given relation is reflexive:
- Check for the existence of every aRa tuple in the relation for all a present in the set.
- If every tuple exists, only then the relation is reflexive. Otherwise, not reflexive.
Follow the below illustration for a better understanding:
Illustration:
Consider set A = {a, b} and a relation R = {{a, a}, {a, b}}.
For the element a in A:
=> The pair {a, a} is present in R.
=> Hence aRa is satisfied.For the element b in A:
=> The pair {b, b} is not present int R.
=> Hence bRb is not satisfied.As the condition for 'b' is not satisfied, the relation is not reflexive.
Below is a code implementation of the approach.
// C++ code to check if a set is reflexive
#include <bits/stdc++.h>
using namespace std;
class Relation {
public:
bool checkReflexive(set<int> A, set<pair<int, int> > R)
{
// Property 1
if (A.size() > 0 && R.size() == 0) {
return false;
}
// Property 2
else if (A.size() == 0) {
return true;
}
for (auto i = A.begin(); i != A.end(); i++) {
// Making a tuple of same element
auto temp = make_pair(*i, *i);
if (R.find(temp) == R.end()) {
// If aRa tuple not exists in relation R
return false;
}
}
// All aRa tuples exists in relation R
return true;
}
};
// Driver code
int main()
{
// Creating a set A
set<int> A{ 1, 2, 3, 4 };
// Creating relation R
set<pair<int, int> > R;
// Inserting tuples in relation R
R.insert(make_pair(1, 1));
R.insert(make_pair(1, 2));
R.insert(make_pair(2, 2));
R.insert(make_pair(2, 3));
R.insert(make_pair(3, 2));
R.insert(make_pair(3, 3));
Relation obj;
// R in not reflexive as (4, 4) tuple is not present
if (obj.checkReflexive(A, R)) {
cout << "Reflexive Relation" << endl;
}
else {
cout << "Not a Reflexive Relation" << endl;
}
return 0;
}
// Java code implementation for the above approach
import java.io.*;
import java.util.*;
class pair {
int first, second;
pair(int first, int second)
{
this.first = first;
this.second = second;
}
}
class GFG {
static class Relation {
boolean checkReflexive(Set<Integer> A, Set<pair> R)
{
// Property 1
if (A.size() > 0 && R.size() == 0) {
return false;
}
// Property 2
else if (A.size() == 0) {
return true;
}
for (var i : A) {
if (!R.contains(new pair(i, i))) {
// If aRa tuple not exists in relation R
return false;
}
}
// All aRa tuples exists in relation R
return true;
}
}
public static void main(String[] args)
{
// Creating a set A
Set<Integer> A = new HashSet<>();
A.add(1);
A.add(2);
A.add(3);
A.add(4);
// Creating relation R
Set<pair> R = new HashSet<>();
// Inserting tuples in relation R
R.add(new pair(1, 1));
R.add(new pair(1, 2));
R.add(new pair(2, 2));
R.add(new pair(2, 3));
R.add(new pair(3, 2));
R.add(new pair(3, 3));
Relation obj = new Relation();
// R in not reflexive as (4, 4) tuple is not present
if (obj.checkReflexive(A, R)) {
System.out.println("Reflexive Relation");
}
else {
System.out.println("Not a Reflexive Relation");
}
}
}
// This code is contributed by lokeshmvs21.
class Relation:
def checkReflexive(self, A, R):
# Property 1
if len(A) > 0 and len(R) == 0:
return False
# Property 2
elif len(A) == 0:
return True
for i in A:
if (i, i) not in R:
# If aRa tuple not exists in relation R
return False
# All aRa tuples exists in relation R
return True
# Driver code
if __name__ == '__main__':
# Creating a set A
A = {1, 2, 3, 4}
# Creating relation R
R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (3, 3)}
obj = Relation()
# R in not reflexive as (4, 4) tuple is not present
if obj.checkReflexive(A, R):
print("Reflexive Relation")
else:
print("Not a Reflexive Relation")
// C# code implementation for the above approach
using System;
using System.Collections.Generic;
class pair {
public int first, second;
public pair(int first, int second)
{
this.first = first;
this.second = second;
}
}
public class GFG {
class Relation {
public bool checkReflexive(HashSet<int> A,
HashSet<pair> R)
{
// Property 1
if (A.Count > 0 && R.Count == 0) {
return false;
}
// Property 2
else if (A.Count == 0) {
return true;
}
foreach(var i in A)
{
if (!R.Contains(new pair(i, i)))
{
// If aRa tuple not exists in relation R
return false;
}
}
// All aRa tuples exists in relation R
return true;
}
}
static public void Main()
{
// Creating a set A
HashSet<int> A = new HashSet<int>();
A.Add(1);
A.Add(2);
A.Add(3);
A.Add(4);
// Creating relation R
HashSet<pair> R = new HashSet<pair>();
// Inserting tuples in relation R
R.Add(new pair(1, 1));
R.Add(new pair(1, 2));
R.Add(new pair(2, 2));
R.Add(new pair(2, 3));
R.Add(new pair(3, 2));
R.Add(new pair(3, 3));
Relation obj = new Relation();
// R in not reflexive as (4, 4) tuple is not present
if (obj.checkReflexive(A, R)) {
Console.WriteLine("Reflexive Relation");
}
else {
Console.WriteLine("Not a Reflexive Relation");
}
}
}
// This code is contributed by lokesh
// JS code to check if a set is reflexive
function checkReflexive(A, R)
{
let cnt = 0;
// Property 1
if (A.size > 0 && R.size == 0) {
return false;
}
// Property 2
else if (A.size == 0) {
return true;
}
A.forEach(i => {
// Making a tuple of same element
let temp = [i, i];
if (!R.has(temp)) {
// If aRa tuple not exists in relation R
cnt++;
}
});
// All aRa tuples exists in relation R
if(cnt==0)
return true;
else
return false;
}
// Driver code
// Creating a set A
let A = new Set([ 1, 2, 3, 4 ]);
// Creating relation R
let R = new Set();
// Inserting tuples in relation R
R.add([1,1]);
R.add([1,2]);
R.add([2,2]);
R.add([2,3]);
R.add([3,2]);
R.add([3,3]);
R.add([3,3]);
// R in not reflexive as (4, 4) tuple is not present
if (checkReflexive(A, R)) {
console.log("Reflexive Relation");
}
else {
console.log("Not a Reflexive Relation");
}
// This code is contributed by akashish__
Output
Not a Reflexive Relation
Time Complexity: O(N * log M) where N is the size of the set and M is the number of pairs in the relation
Auxiliary Space: O(1)