Python | Pandas DataFrame.values
Last Updated :
20 Feb, 2019
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas
DataFrame.values attribute return a Numpy representation of the given DataFrame.
Syntax: DataFrame.values
Parameter : None
Returns : array
Example #1: Use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
'Age':[14, 25, 55, 8, 21]})
# Print the DataFrame
print(df)
Output :

Now we will use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3 1==
# return the numpy representation of
# this dataframe
result = df.values
# Print the result
print(result)
Output :

As we can see in the output, the
DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.
Example #2: Use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1],
"B":[7, 2, 54, 3, None],
"C":[20, 16, 11, 3, 8],
"D":[14, 3, None, 2, 6]})
# Print the DataFrame
print(df)
Output :

Now we will use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3 1==
# return the numpy representation of
# this dataframe
result = df.values
# Print the result
print(result)
Output :

As we can see in the output, the
DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.