Get all rows in a Pandas DataFrame containing given substring
Last Updated :
24 Dec, 2018
Improve
Let's see how to get all rows in a Pandas DataFrame containing given substring with the help of different examples.
Code #1: Check the values PG in column Position
Python3 1==
Output:
But this result doesn't seem very helpful, as it returns the bool values with the index. Let's see if we can do something better.
Code #2: Getting the rows satisfying condition
Python3 1==
Output:
Code #3: Filter all rows where either Team contains 'Boston' or College contains 'MIT'.
Python3 1==
Output:
Code #4: Filter rows checking Team name contains 'Boston and Position must be PG.
Python3 1==
Output:
Code #5: Filter rows checking Position contains PG and College must contains like UC.
Python3 1==
Output:
# importing pandas
import pandas as pd
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
'Number': [3, 4, 7, 11, 5],
'Age': [33, 25, 34, 35, 28],
'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
'Weight': [89, 79, 113, 78, 84],
'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
'Salary': [99999, 99994, 89999, 78889, 87779]},
index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
print(df, "\n")
print("Check PG values in Position column:\n")
df1 = df['Position'].str.contains("PG")
print(df1)

# importing pandas as pd
import pandas as pd
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
'Number': [3, 4, 7, 11, 5],
'Age': [33, 25, 34, 35, 28],
'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
'Weight': [89, 79, 113, 78, 84],
'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
'Salary': [99999, 99994, 89999, 78889, 87779]},
index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
df1 = df[df['Position'].str.contains("PG")]
print(df1)

# importing pandas
import pandas as pd
# Creating the dataframe with dict of lists
df = pd.DataFrame({'Name': ['Geeks', 'Peter', 'James', 'Jack', 'Lisa'],
'Team': ['Boston', 'Boston', 'Boston', 'Chele', 'Barse'],
'Position': ['PG', 'PG', 'UG', 'PG', 'UG'],
'Number': [3, 4, 7, 11, 5],
'Age': [33, 25, 34, 35, 28],
'Height': ['6-2', '6-4', '5-9', '6-1', '5-8'],
'Weight': [89, 79, 113, 78, 84],
'College': ['MIT', 'MIT', 'MIT', 'Stanford', 'Stanford'],
'Salary': [99999, 99994, 89999, 78889, 87779]},
index =['ind1', 'ind2', 'ind3', 'ind4', 'ind5'])
df1 = df[df['Team'].str.contains("Boston") | df['College'].str.contains('MIT')]
print(df1)

# importing pandas module
import pandas as pd
# making data frame
df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")
df1 = df[df['Team'].str.contains('Boston') & df['Position'].str.contains('PG')]
df1

# importing pandas module
import pandas as pd
# making data frame
df = pd.read_csv("https://media.geeksforgeeks.org/wp-content/uploads/nba.csv")
df1 = df[df['Position'].str.contains("PG") & df['College'].str.contains('UC')]
df1
