Python | Pandas dataframe.count()
Last Updated :
20 Nov, 2018
Improve
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
Python3 1==
Now find the count of non-NA value across the row axis
Python3 1==
Output :
Example #2: Use
Python3 1==
Output :
dataframe.count()
is used to count the no. of non-NA/null observations across the given axis. It works with non-floating type data as well.
Syntax: DataFrame.count(axis=0, level=None, numeric_only=False) Parameters: axis : 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise level : If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : Include only float, int, boolean data Returns: count : Series (or DataFrame if level specified)Example #1: Use
count()
function to find the number of non-NA/null value across the row axis.
# importing pandas as pd
import pandas as pd
# Creating a dataframe using dictionary
df = pd.DataFrame({"A":[-5, 8, 12, None, 5, 3],
"B":[-1, None, 6, 4, None, 3],
"C:["sam", "haris", "alex", np.nan, "peter", "nathan"]})
# Printing the dataframe
df

# axis = 0 indicates row
df.count(axis = 0)

count()
function to find the number of non-NA/null value across the column.
# importing pandas as pd
import pandas as pd
# Creating a dataframe using dictionary
df = pd.DataFrame({"A":[-5, 8, 12, None, 5, 3],
"B":[-1, None, 6, 4, None, 3],
"C:["sam", "haris", "alex", np.nan, "peter", "nathan"]})
# Find count of non-NA across the columns
df.count(axis = 1)
