Matplotlib.colors.to_rgb() in Python
Last Updated :
25 Apr, 2025
Improve
Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.colors.to_rgb()
The matplotlib.colors.to_rgb() function is used convert c (ie, color) to an RGB color. It converts the color name into a array of RGB encoded colors. It returns an RGB tuple of three floats from 0-1.
Syntax: matplotlib.colors.to_rgb(c)
Parameters:
- c: This accepts a string that represents the name of the color. It can be an RGB or RGBA sequence or a string in any of several forms:
- a hex color string, like ‘#000FFF’
- a standard name, like ‘green’
- a letter from the set ‘rgbcmykw’
- a string representation of a float, like ‘0.4’, indicating gray on a 0-1 scale
Example 1:
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
# helper function to plot a color table
def colortable(colors, title, colors_sort = True, emptycols = 0):
# cell dimensions
width = 212
height = 22
swatch_width = 48
margin = 12
topmargin = 40
# Sorting colors based on hue, saturation,
# value and name.
if colors_sort is True:
to_hsv = sorted((tuple(mcolors.rgb_to_hsv(mcolors.to_rgb(color))),
name)
for name, color in colors.items())
names = [name for hsv, name in to_hsv]
else:
names = list(colors)
length_of_names = len(names)
length_cols = 4 - emptycols
length_rows = length_of_names // length_cols + int(length_of_names % length_cols > 0)
width2 = width * 4 + 2 * margin
height2 = height * length_rows + margin + topmargin
dpi = 72
figure, axes = plt.subplots(figsize =(width2 / dpi, height2 / dpi), dpi = dpi)
figure.subplots_adjust(margin / width2, margin / height2,
(width2-margin)/width2, (height2-topmargin)/height2)
axes.set_xlim(0, width * 4)
axes.set_ylim(height * (length_rows-0.5), -height / 2.)
axes.yaxis.set_visible(False)
axes.xaxis.set_visible(False)
axes.set_axis_off()
axes.set_title(title, fontsize = 24, loc ="left", pad = 10)
for i, name in enumerate(names):
rows = i % length_rows
cols = i // length_rows
y = rows * height
swatch_start_x = width * cols
swatch_end_x = width * cols + swatch_width
text_pos_x = width * cols + swatch_width + 7
axes.text(text_pos_x, y, name, fontsize = 14,
horizontalalignment ='left',
verticalalignment ='center')
axes.hlines(y, swatch_start_x, swatch_end_x,
color = colors[name], linewidth = 18)
return figure
colortable(mcolors.BASE_COLORS, "Base Colors",
colors_sort = False, emptycols = 1)
colortable(mcolors.TABLEAU_COLORS, "Tableau Palette",
colors_sort = False, emptycols = 2)
colortable(mcolors.CSS4_COLORS, "CSS Colors")
plt.show()
Output:


Example 2:
from matplotlib import colors
import matplotlib.pyplot as plt
alpha = 0.5
kwargs = dict(edgecolors ='none', s = 3900, marker ='s')
for i, color in enumerate(['pink', 'brown', 'green']):
rgb = colors.to_rgb(color)
plt.scatter([i], [0], color = color, **kwargs)
plt.scatter([i], [1], color = color,
alpha = alpha, **kwargs)
plt.scatter([i], [2], color = rgb, **kwargs)
Output:
