Given two nodes n1 and n2 of a Binary Search Tree, find the Lowest Common Ancestor (LCA). You may assume that both values exist in the tree.
The Lowest Common Ancestor between two nodes n1 and n2 is defined as the lowest node that has both n1 and n2 as descendants (where we allow a node to be a descendant of itself). In other words, the LCA of n1 and n2 is the shared ancestor of n1 and n2 that is located farthest from the root [i.e., closest to n1 and n2].
Examples:
Input Tree:
Input: LCA of 10 and 14 Output: 12 Explanation: 12 is the closest node to both 10 and 14, which is also an ancestor of both the nodes.
Input: LCA of 8 and 14 Output: 8 Explanation: 8 is the closest node to both 8 and 14, which is also an ancestor of both the nodes.
We can use all the methods discussed in Lowest Common Ancestor in a Binary Tree. The methods discussed there give us the best possible time complexity as O(n) where n is the number of nodes in BST. We can do better if we use BST properties.
Using BST Properties (Recursive Approach) - O(h) Time and O(h) Space
In a Binary search tree, while traversing the tree from top to bottom the first node which lies in between the two numbers n1 and n2 is the LCA of the nodes, i.e. the first node n with the lowest depth which lies in between n1 and n2 (n1 <= n <= n2, assumingn1 < n2).
So just recursively traverse the BST , if node's value is greater than both n1 and n2 then our LCA lies in the left side of the node, if it is smaller than both n1 and n2, then LCA lies on the right side. Otherwise, the root is LCA (assuming that both n1 and n2 are present in BST).
C++
//Driver Code Starts// C++ program to find LCA of given node in BST// Using Properties of BST and Recursion#include<iostream>usingnamespacestd;classNode{public:intdata;Node*left;Node*right;Node(intval){data=val;left=right=nullptr;}};//Driver Code Ends// Function to find LCA of nodes n1 and n2, assuming// both are present in the BSTNode*LCA(Node*root,Node*n1,Node*n2){if(root==nullptr)returnnullptr;// If both n1 and n2 are smaller than // root, go to left subtreeif(root->data>n1->data&&root->data>n2->data)returnLCA(root->left,n1,n2);// If both n1 and n2 are greater than // root, go to right subtreeif(root->data<n1->data&&root->data<n2->data)returnLCA(root->right,n1,n2);// If nodes n1 and n2 are on the opposite sides, // then root is the LCAreturnroot;}//Driver Code Startsintmain(){// Representation of input BST:// 20// / \ // 8 22// / \ // 4 12 // / \ // 10 14 Node*root=newNode(20);root->left=newNode(8);root->right=newNode(22);root->left->left=newNode(4);root->left->right=newNode(12);root->left->right->left=newNode(10);root->left->right->right=newNode(14);Node*n1=root->left->left;// Node 4Node*n2=root->left->right->right;// Node 14Node*res=LCA(root,n1,n2);cout<<res->data<<endl;return0;}//Driver Code Ends
C
//Driver Code Starts// C program to find LCA of given node in BST// Using Properties of BST and Recursion#include<stdio.h>#include<stdlib.h>typedefstructNode{intdata;structNode*left;structNode*right;}Node;// Utility function to create a new nodeNode*newNode(intval){Node*node=(Node*)malloc(sizeof(Node));node->data=val;node->left=node->right=NULL;returnnode;}//Driver Code Ends// Function to find LCA of nodes n1 and n2, assuming// both are present in the BSTNode*LCA(Node*root,Node*n1,Node*n2){if(root==NULL)returnNULL;// If both n1 and n2 are smaller than root, // go to left subtreeif(root->data>n1->data&&root->data>n2->data)returnLCA(root->left,n1,n2);// If both n1 and n2 are greater than root, // go to right subtreeif(root->data<n1->data&&root->data<n2->data)returnLCA(root->right,n1,n2);// If nodes n1 and n2 are on the opposite sides, // root is the LCAreturnroot;}//Driver Code Startsintmain(){// Representation of input BST:// 20// / \ // 8 22// / \ // 4 12 // / \ // 10 14 Node*root=newNode(20);root->left=newNode(8);root->right=newNode(22);root->left->left=newNode(4);root->left->right=newNode(12);root->left->right->left=newNode(10);root->left->right->right=newNode(14);Node*n1=root->left->left;// Node 4Node*n2=root->left->right->right;// Node 14Node*res=LCA(root,n1,n2);printf("%d",res->data);return0;}//Driver Code Ends
Java
//Driver Code Starts// Java program to find LCA of given node in BST// Using Properties of BST and RecursionclassNode{intdata;Nodeleft,right;Node(intval){data=val;left=right=null;}}classGfG{//Driver Code Ends// Function to find LCA of nodes n1 and n2, assuming// both are present in the BSTstaticNodeLCA(Noderoot,Noden1,Noden2){if(root==null)returnnull;// If both n1 and n2 are smaller than root, // go to left subtreeif(root.data>n1.data&&root.data>n2.data)returnLCA(root.left,n1,n2);// If both n1 and n2 are greater than root, // go to right subtreeif(root.data<n1.data&&root.data<n2.data)returnLCA(root.right,n1,n2);// If nodes n1 and n2 are on the opposite sides, // root is the LCAreturnroot;}//Driver Code Startspublicstaticvoidmain(String[]args){// Representation of input BST:// 20// / \// 8 22// / \ // 4 12 // / \ // 10 14 Noderoot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);Noden1=root.left.left;// Node 4Noden2=root.left.right.right;// Node 14Noderes=LCA(root,n1,n2);System.out.println(res.data);}}//Driver Code Ends
Python
#Driver Code Starts# Python program to find LCA of given node in BST# Using Properties of BST and RecursionclassNode:def__init__(self,val):self.data=valself.left=Noneself.right=None#Driver Code Ends# Function to find LCA of nodes n1 and n2, assuming# both are present in the BSTdefLCA(root,n1,n2):ifrootisNone:returnNone# If both n1 and n2 are smaller than root, # go to left subtreeifroot.data>n1.dataandroot.data>n2.data:returnLCA(root.left,n1,n2)# If both n1 and n2 are greater than root, # go to right subtreeifroot.data<n1.dataandroot.data<n2.data:returnLCA(root.right,n1,n2)# If nodes n1 and n2 are on the opposite sides, # root is the LCAreturnroot#Driver Code Startsif__name__=="__main__":# Representation of input BST:# 20# / \# 8 22# / \ # 4 12 # / \ # 10 14 root=Node(20)root.left=Node(8)root.right=Node(22)root.left.left=Node(4)root.left.right=Node(12)root.left.right.left=Node(10)root.left.right.right=Node(14)n1=root.left.left# Node 4n2=root.left.right.right# Node 14res=LCA(root,n1,n2)print(res.data)#Driver Code Ends
C#
//Driver Code Starts// C# program to find LCA of given node in BST// Using Properties of BST and RecursionusingSystem;classNode{publicintdata;publicNodeleft,right;publicNode(intval){data=val;left=right=null;}}classGfG{//Driver Code Ends// Function to find LCA of nodes n1 and n2, assuming// both are present in the BSTstaticNodeLCA(Noderoot,Noden1,Noden2){if(root==null)returnnull;// If both n1 and n2 are smaller than root,// go to left subtreeif(root.data>n1.data&&root.data>n2.data)returnLCA(root.left,n1,n2);// If both n1 and n2 are greater than root, // go to right subtreeif(root.data<n1.data&&root.data<n2.data)returnLCA(root.right,n1,n2);// If nodes n1 and n2 are on the opposite sides, // root is the LCAreturnroot;}//Driver Code StartsstaticvoidMain(string[]args){// Representation of input BST:// 20// / \// 8 22// / \ // 4 12 // / \ // 10 14 Noderoot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);Noden1=root.left.left;// Node 4Noden2=root.left.right.right;// Node 14Noderes=LCA(root,n1,n2);Console.WriteLine(res.data);}}//Driver Code Ends
JavaScript
//Driver Code Starts// JavaScript program to find LCA of given node in BST// Using Properties of BST and RecursionclassNode{constructor(val){this.data=val;this.left=null;this.right=null;}}//Driver Code Ends// Function to find LCA of nodes n1 and n2, assuming// both are present in the BSTfunctionLCA(root,n1,n2){if(root===null)returnnull;// If both n1 and n2 are smaller than root, go to left subtreeif(root.data>n1.data&&root.data>n2.data)returnLCA(root.left,n1,n2);// If both n1 and n2 are greater than root, go to right subtreeif(root.data<n1.data&&root.data<n2.data)returnLCA(root.right,n1,n2);// If nodes n1 and n2 are on the opposite sides, root is the LCAreturnroot;}//Driver Code Starts// Driver Code// Representation of input BST:// 20// / \// 8 22// / \ // 4 12 // / \ // 10 14 constroot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);constn1=root.left.left;// Node 4constn2=root.left.right.right;// Node 14constres=LCA(root,n1,n2);console.log(res.data);//Driver Code Ends
Output
8
Using BST Properties (Iterative Method) - O(h) Time and O(1) Space
The auxiliary space in the above method can be optimized by eliminating recursion. Below is the iterative implementation of this approach.
C++
// C++ program to find LCA of given node in BST// Using Properties of BST and Iteration#include<iostream>usingnamespacestd;classNode{public:intdata;Node*left;Node*right;Node(intval){data=val;left=right=nullptr;}};// Function to find LCA of n1 and n2, assuming // that both nodes n1 and n2 are present in BST Node*LCA(Node*root,Node*n1,Node*n2){while(root!=nullptr){// If both n1 and n2 are smaller than root,// then LCA lies in leftif(root->data>n1->data&&root->data>n2->data)root=root->left;// If both n1 and n2 are greater than root,// then LCA lies in rightelseif(root->data<n1->data&&root->data<n2->data)root=root->right;// Else Ancestor is foundelsebreak;}returnroot;}intmain(){// Representation of input BST:// 20// / \ // 8 22// / \ // 4 12 // / \ // 10 14 Node*root=newNode(20);root->left=newNode(8);root->right=newNode(22);root->left->left=newNode(4);root->left->right=newNode(12);root->left->right->left=newNode(10);root->left->right->right=newNode(14);Node*n1=root->left->left;// Node 4Node*n2=root->left->right->right;// Node 14Node*res=LCA(root,n1,n2);cout<<res->data<<endl;return0;}
C
// C program to find LCA of given node in BST// Using Properties of BST and Iteration#include<stdio.h>#include<stdlib.h>// Definition of Node structuretypedefstructNode{intdata;structNode*left;structNode*right;}Node;// Function to create a new nodeNode*createNode(intval){Node*newNode=(Node*)malloc(sizeof(Node));newNode->data=val;newNode->left=newNode->right=NULL;returnnewNode;}// Function to find LCA of n1 and n2, assuming // that both nodes n1 and n2 are present in BST Node*LCA(Node*root,Node*n1,Node*n2){while(root!=NULL){// If both n1 and n2 are smaller than root,// then LCA lies in leftif(root->data>n1->data&&root->data>n2->data)root=root->left;// If both n1 and n2 are greater than root,// then LCA lies in rightelseif(root->data<n1->data&&root->data<n2->data)root=root->right;// Else Ancestor is foundelsebreak;}returnroot;}intmain(){// Representation of input BST:// 20// / \ // 8 22// / \ // 4 12 // / \ // 10 14 Node*root=createNode(20);root->left=createNode(8);root->right=createNode(22);root->left->left=createNode(4);root->left->right=createNode(12);root->left->right->left=createNode(10);root->left->right->right=createNode(14);Node*n1=root->left->left;// Node 4Node*n2=root->left->right->right;// Node 14Node*res=LCA(root,n1,n2);printf("%d\n",res->data);return0;}
Java
// Java program to find LCA of given node in BST// Using Properties of BST and IterationclassNode{intdata;Nodeleft,right;Node(intval){data=val;left=right=null;}}classGfG{// Function to find LCA of n1 and n2, assuming// that both nodes n1 and n2 are present in BSTstaticNodeLCA(Noderoot,Noden1,Noden2){while(root!=null){// If both n1 and n2 are smaller than root,// then LCA lies in leftif(root.data>n1.data&&root.data>n2.data)root=root.left;// If both n1 and n2 are greater than root,// then LCA lies in rightelseif(root.data<n1.data&&root.data<n2.data)root=root.right;// Else Ancestor is foundelsebreak;}returnroot;}publicstaticvoidmain(String[]args){// Representation of input BST:// 20// / \// 8 22// / \// 4 12// / \// 10 14Noderoot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);Noden1=root.left.left;// Node 4Noden2=root.left.right.right;// Node 14Noderes=LCA(root,n1,n2);System.out.println(res.data);}}
Python
# C++ program to find LCA of given node in BST# Using Properties of BST and IterationclassNode:def__init__(self,data):self.data=dataself.left=Noneself.right=None# Function to find LCA of n1 and n2, assuming # that both nodes n1 and n2 are present in BSTdefLCA(root,n1,n2):whileroot:# If both n1 and n2 are smaller than root,# then LCA lies in leftifroot.data>n1.dataandroot.data>n2.data:root=root.left# If both n1 and n2 are greater than root,# then LCA lies in rightelifroot.data<n1.dataandroot.data<n2.data:root=root.right# Else Ancestor is foundelse:breakreturnrootif__name__=="__main__":# Representation of input BST:# 20# / \# 8 22# / \ # 4 12 # / \ # 10 14 root=Node(20)root.left=Node(8)root.right=Node(22)root.left.left=Node(4)root.left.right=Node(12)root.left.right.left=Node(10)root.left.right.right=Node(14)n1=root.left.left# Node 4n2=root.left.right.right# Node 14res=LCA(root,n1,n2)print(res.data)
C#
// C# program to find LCA of given node in BST// Using Properties of BST and IterationusingSystem;classNode{publicintdata;publicNodeleft,right;publicNode(intval){data=val;left=right=null;}}classGfG{// Function to find LCA of n1 and n2, assuming // that both nodes n1 and n2 are present in BSTstaticNodeLCA(Noderoot,Noden1,Noden2){while(root!=null){// If both n1 and n2 are smaller than root,// then LCA lies in leftif(root.data>n1.data&&root.data>n2.data)root=root.left;// If both n1 and n2 are greater than root,// then LCA lies in rightelseif(root.data<n1.data&&root.data<n2.data)root=root.right;// Else Ancestor is foundelsebreak;}returnroot;}staticvoidMain(string[]args){// Representation of input BST:// 20// / \// 8 22// / \ // 4 12 // / \ // 10 14 Noderoot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);Noden1=root.left.left;// Node 4Noden2=root.left.right.right;// Node 14Noderes=LCA(root,n1,n2);Console.WriteLine(res.data);}}
JavaScript
// JavaScript program to find LCA of given node in BST// Using Properties of BST and IterationclassNode{constructor(data){this.data=data;this.left=null;this.right=null;}}// Function to find LCA of n1 and n2, assuming // that both nodes n1 and n2 are present in BSTfunctionLCA(root,n1,n2){while(root!==null){// If both n1 and n2 are smaller than root,// then LCA lies in leftif(root.data>n1.data&&root.data>n2.data)root=root.left;// If both n1 and n2 are greater than root,// then LCA lies in rightelseif(root.data<n1.data&&root.data<n2.data)root=root.right;// Else Ancestor is foundelsebreak;}returnroot;}// Representation of input BST:// 20// / \// 8 22// / \ // 4 12 // / \ // 10 14 constroot=newNode(20);root.left=newNode(8);root.right=newNode(22);root.left.left=newNode(4);root.left.right=newNode(12);root.left.right.left=newNode(10);root.left.right.right=newNode(14);constn1=root.left.left;// Node 4constn2=root.left.right.right;// Node 14constres=LCA(root,n1,n2);console.log(res.data);
Output
8
How to handle cases when key(s) not present?
In a BST, we can search a key in O(h) time. So we can first explicitly search the keys and then do find LCA using the above method and still have time complexity as O(h).
We use cookies to ensure you have the best browsing experience on our website. By using our site, you
acknowledge that you have read and understood our
Cookie Policy &
Privacy Policy
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.