Collections Class in Java
Collections class in Java is one of the utility classes in the Java Collections Framework. The java.util package contains the Collections class in Java. The Java Collections class is used with the static methods that operate on the collections or return the collection. All the methods of this class throw a NullPointerException if the collection or object passed to the methods is null.
Example 1: Here, we will use ArrayList, which is a class from the Java Collections framework. It allows for storing elements in a list by maintaining the insertion order and also allows duplicates.
import java.util.ArrayList;
public class Geeks {
public static void main(String[] args) {
// Create an ArrayList to store elements
ArrayList<String> al = new ArrayList<>();
// Add elements to the list
al.add("Apple");
al.add("Banana");
al.add("Apple"); // Duplicates are allowed
System.out.println("" + al);
}
}
Output
[Apple, Banana, Apple]
Collection Class Declaration
The Declaration of collection class is listed below:
public class Collections extends Object
Remember: Object is the parent class of all the classes.

Common Java Collection Classes
Collection Framework contains both classes and interfaces. Although both seem the same but there are certain differences between Collection classes and the Collections framework.
To know the difference between Collection and Collections, refer this article: Collection vs. Collections
The Collection classes in Java are mentioned below:
1. ArrayList
ArrayList is a class implemented using a list interface, in that provides the functionality of a dynamic array where the size of the array is not fixed.
Syntax:
ArrayList<_type_> var_name = new ArrayList<_type_>();
2. Vector
Vector is a Part of the collection class that implements a dynamic array that can grow or shrink its size as required.
Syntax:
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess,
Cloneable, Serializable
3. Stack
Stack is a part of Java collection class that models and implements a Stack data structure. It is based on the basic principle of last-in-first-out(LIFO).
Syntax:
public class Stack<E> extends Vector<E>
4. LinkedList
LinkedList class is an implementation of the LinkedList data structure. It can store the elements that are not stored in contiguous locations and every element is a separate object with a different data part and different address part.
Syntax:
LinkedList<_type_> var_name = new LinkedList<_type_>();
5. HashSet
HashSet is implemented using the Hashtable data structure. It helps us add, remove, or find items very quickly, no matter how many items there are.
Syntax:
public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable
Note: HashSet internally uses HashMap not Hashtable.
6. LinkedHashSet
LinkedHashSet is an ordered version of HashSet that maintains a doubly-linked List across all elements.
Syntax:
public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable
7. TreeSet
TreeSet class is implementations of the SortedSet interface in Java that uses a Tree for storage. The ordering of the elements is maintained by a set using their natural ordering whether an explicit comparator is provided or not.
Syntax:
TreeSet<E> set = new TreeSet<>();
8. PriorityQueue
The PriorityQueue keeps the element in order based on their importance. We can use the normal order or can choose our own way to decide which item comes first.
Syntax:
public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable
9. ArrayDeque
ArrayDeque is a class that works with double ended queue. It uses a resizable array to store elements. It provides constant-time for adding and removing elements from both the ends.
Syntax:
public class ArrayDeque<E> extends
AbstractCollection<E> implements Deque<E>, Cloneable,Serializable
10. HashMap
HashMap Class is similar to HashTable but the data unsynchronized. It stores the element in (Key, Value) pairs, and we can access the elemenets with the help of index.
Syntax:
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
11. EnumMap
EnumMap extends AbstractMap and implements the Map interface in Java.
Syntax:
public class EnumMap<K extends Enum<K>,V> extends
AbstractMap<K,V> implements Serializable, Cloneable
12. AbstractMap
The AbstractMap class is a part of the Java Collection Framework. It implements the Map interface to provide a structure to it, by doing so it makes the further implementations easier.
Syntax:
public abstract class AbstractMap<K,V> implements Map<K,V>
13. TreeMap
A TreeMap is implemented using a Red-Black tree. It is a kind of map that keys the keys in order. The keys are sorted either by their usual order or by a custom rule we give when creating the map.
Syntax:
SortedMap<K, V> m = Collections.synchronizedSortedMap(new TreeMap<>());
Java Collections Class Fields
The collection class contains 3 fields as listed below which can be used to return immutable entities.
- EMPTY_LIST to get an immutable empty List
- EMPTY_SET to get an immutable empty Set
- EMPTY_MAP to get an immutable empty Map
Methods of Collections Class
Now let us do discuss methods that are present inside this class so that we can use these inbuilt functionalities later on in our program. Below are the methods have been listed below in a tabular format as shown below as follows:
Methods | Description |
---|---|
addAll(Collection<? super T> c, T... elements) | This method is used to insert the specified collection elements to the specified collection. |
asLifoQueue(Deque<T> deque) | This method returns a view of a Deque as a Last-in-first-out (Lifo) Queue. |
binarySearch(List<? extends Comparable> list, T key) | This method searches the key using binary search in the specified list. |
binarySearch(List<? extends T> list, T key, Comparator<? super T> c) | This method searches the specified list for the specified object using the binary search algorithm. |
checkedCollection(Collection<E> c, Class<E> type) | This method returns a dynamically typesafe view of the specified collection. |
checkedList(List<E> list, Class<E> type) | This method returns a dynamically typesafe view of the specified list. |
checkedMap(Map<K,V> m, Class<K> keyType, Class<V> valueType) | This method returns a dynamically typesafe view of the specified map. |
checkedNavigableMap(NavigableMap<K,V> m, Class<K> keyType, Class<V> valueType) | This method returns a dynamically typesafe view of the specified navigable map. |
checkedNavigableSet(NavigableSet<E> s, Class<E> type) | This method returns a dynamically typesafe view of the specified navigable set. |
checkedQueue(Queue<E> queue, Class<E> type) | This method returns a dynamically typesafe view of the specified queue. |
checkedSet(Set<E> s, Class<E> type) | This method returns a dynamically typesafe view of the specified set. |
checkedSortedMap(SortedMap<K,V> m, Class<K> keyType, Class<V> valueType) | This method returns a dynamically typesafe view of the specified sorted map. |
checkedSortedSet(SortedSet<E> s, Class<E> type) | This method returns a dynamically typesafe view of the specified sorted set. |
copy(List<? super T> dest, List<? extends T> src) | This method copies all of the elements from one list into another. |
disjoint(Collection<?> c1, Collection<?> c2) | This method returns true if the two specified collections have no elements in common. |
emptyEnumeration() | This method returns an enumeration that has no elements. |
emptyIterator() | This method returns an iterator that has no elements. |
emptyList() | This method returns an empty list (immutable). |
emptyListIterator() | This method returns a list iterator that has no elements. |
emptyMap() | This method returns an empty map (immutable). |
emptyNavigableMap() | This method returns an empty navigable map (immutable). |
emptyNavigableSet() | This method returns an empty navigable set (immutable). |
emptySet() | This method returns an empty set (immutable). |
emptySortedMap() | This method returns an empty sorted map (immutable). |
emptySortedSet() | This method returns an empty sorted set (immutable). |
enumeration(Collection<T> c) | This method returns an enumeration over the specified collection. |
fill(List<? super T> list, T obj) | This method replaces all of the elements of the specified list with the specified element. |
frequency(Collection<?> c, Object o) | This method returns the number of elements in the specified collection equal to the specified object. |
indexOfSubList(List<?> source, List<?> target) | This method returns the starting position of the first occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence. |
lastIndexOfSubList(List<?> source, List<?> target) | This method returns the starting position of the last occurrence of the specified target list within the specified source list, or -1 if there is no such occurrence. |
list(Enumeration<T> e) | This method returns an array list containing the elements returned by the specified enumeration in the order they are returned by the enumeration. |
max(Collection<? extends T> coll) | This method returns the maximum element of the given collection, according to the natural ordering of its elements. |
max(Collection<? extends T> coll, Comparator<? super T> comp) | This method returns the maximum element of the given collection, according to the order induced by the specified comparator. |
min(Collection<? extends T> coll) | This method returns the minimum element of the given collection, according to the natural ordering of its elements. |
min(Collection<? extends T> coll, Comparator<? super T> comp) | This method returns the minimum element of the given collection, according to the order induced by the specified comparator. |
nCopies(int n, T o) | This method returns an immutable list consisting of n copies of the specified object. |
newSetFromMap(Map<E,Boolean> map) | This method returns a set backed by the specified map. |
replaceAll(List<T> list, T oldVal, T newVal) | This method replaces all occurrences of one specified value in a list with another. |
reverse(List<?> list) | This method reverses the order of the elements in the specified list |
reverseOrder() | This method returns a comparator that imposes the reverse of the natural ordering on a collection of objects that implement the Comparable interface. |
reverseOrder(Comparator<T> cmp) | This method returns a comparator that imposes the reverse ordering of the specified comparator. |
rotate(List<?> list, int distance) | This method rotates the elements in the specified list by the specified distance. |
shuffle(List<?> list) | This method randomly permutes the specified list using a default source of randomness. |
shuffle(List<?> list, Random rnd) | This method randomly permute the specified list using the specified source of randomness. |
singletonMap(K key, V value) | This method returns an immutable map, mapping only the specified key to the specified value. |
singleton(T o) | This method returns an immutable set containing only the specified object. |
singletonList(T o) | This method returns an immutable list containing only the specified object. |
sort(List<T> list) | This method sorts the specified list into ascending order, according to the natural ordering of its elements. |
sort(List<T> list, Comparator<? super T> c) | This method sorts the specified list according to the order induced by the specified comparator. |
swap(List<?> list, int i, int j) | This method swaps the elements at the specified positions in the specified list. |
synchronizedCollection(Collection<T> c) | This method returns a synchronized (thread-safe) collection backed by the specified collection. |
synchronizedList(List<T> list) | This method returns a synchronized (thread-safe) list backed by the specified list. |
synchronizedMap(Map<K,V> m) | This method returns a synchronized (thread-safe) map backed by the specified map. |
synchronizedNavigableMap(NavigableMap<K,V> m) | This method returns a synchronized (thread-safe) navigable map backed by the specified navigable map. |
synchronizedNavigableSet(NavigableSet<T> s) | This method returns a synchronized (thread-safe) navigable set backed by the specified navigable set. |
synchronizedSet(Set<T> s) | This method returns a synchronized (thread-safe) set backed by the specified set. |
synchronizedSortedMap(SortedMap<K,V> m) | This method returns a synchronized (thread-safe) sorted map backed by the specified sorted map. |
synchronizedSortedSet(SortedSet<T> s) | This method returns a synchronized (thread-safe) sorted set backed by the specified sorted set. |
unmodifiableCollection(Collection<? extends T> c) | This method returns an unmodifiable view of the specified collection. |
unmodifiableList(List<? extends T> list) | This method returns an unmodifiable view of the specified list. |
unmodifiableNavigableMap(NavigableMap<K,? extends V> m) | This method returns an unmodifiable view of the specified navigable map. |
unmodifiableNavigableSet(NavigableSet<T> s) | This method returns an unmodifiable view of the specified navigable set. |
unmodifiableSet(Set<? extends T> s) | This method returns an unmodifiable view of the specified set. |
unmodifiableSortedMap(SortedMap<K,? extends V> m) | This method returns an unmodifiable view of the specified sorted map. |
unmodifiableSortedSet(SortedSet<T> s) | This method returns an unmodifiable view of the specified sorted set. |
Now, we have listed all the methods, It is clear how important they are in writing optimized Java code. The Collections class is widely used and its methods appear in almost every optimized Java program. Here, we will implement these methods also discuss their operations.
Java Collections Example
Examples of Collections Classes in Java are mentioned below:
- Adding Elements to the Collections
- Sorting a Collection
- Searching in a Collection
- Copying Elements
- Disjoint Collection
1. Adding Elements to the Collections Class Object
The addAll() method of java.util.Collections class is used to add all the specified elements to the specified collection. Elements to be added may be specified individually or as an array.
Example:
// Adding Elements
// Using addAll() method
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class Geeks {
public static void main(String[] args) {
List<String> l = new ArrayList<>();
// Adding elements to the list
l.add("Shoes");
l.add("Toys");
// Add one or more elements
Collections.addAll(l, "Fruits", "Bat", "Ball");
for (int i = 0; i < l.size(); i++) {
System.out.print(l.get(i) + " ");
}
}
}
Output
Shoes Toys Fruits Bat Ball
2. Sorting a Collection
Collections.sort() is used to sort the elements present in the specified list of Collections in ascending order. Collections.reverseOrder() is used to sort in descending order.
Example:
// Sorting a Collections using sort() method
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class Geeks {
public static void main(String[] args) {
List<String> l = new ArrayList<>();
// Adding elements to the list
// using add() method
l.add("Shoes");
l.add("Toys");
// Adding one or more
// element using addAll()
Collections.addAll(l, "Fruits", "Bat", "Mouse");
// Sorting according to default ordering
// using sort() method
Collections.sort(l);
// Printing the elements
for (int i = 0; i < l.size(); i++) {
System.out.print(l.get(i) + " ");
}
System.out.println();
// Sorting according to reverse ordering
Collections.sort(l, Collections.reverseOrder());
// Printing the reverse order
for (int i = 0; i < l.size(); i++) {
System.out.print(l.get(i) + " ");
}
}
}
Output
Bat Fruits Mouse Shoes Toys Toys Shoes Mouse Fruits Bat
3. Searching in a Collection
Collections.binarySearch() method returns the position of an object in a sorted list. To use this method, the list should be sorted in ascending order, otherwise, the result returned from the method will be wrong. If the element exists in the list, the method will return the position of the element in the sorted list, if the element does not exist in the list then this method will return a negative number that shows where the item would be inserted in the list - 1.
Example:
// Binary Search using Collections.binarySearch()
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class Geeks {
public static void main(String[] args) {
List<String> l = new ArrayList<>();
// Adding elements to object
// using add() method
l.add("Shoes");
l.add("Toys");
l.add("Horse");
l.add("Ball");
l.add("Grapes");
// Sort the List
Collections.sort(l);
// BinarySearch on the List
System.out.println(
"The index of Horse is: "
+ Collections.binarySearch(l, "Horse"));
// BinarySearch on the List
System.out.println(
"The index of Dog is: "
+ Collections.binarySearch(l, "Dog"));
}
}
Output
The index of Horse is: 2 The index of Dog is: -2
Note: The list must be sorted before using binarySearch to get the correct results.
4. Copying Elements
The copy() method of Collections class is used to copy all the elements from one list into another. After the operation, the index of each copied element in the destination list will be identical to its index in the source list. The destination list must be at least as long as the source list. If it is longer, the remaining elements in the destination list are unaffected.
Example:
// Copying Elements using copy() method
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class Geeks {
public static void main(String[] args) {
List<String> l1 = new ArrayList<>();
// Add elements
l1.add("Shoes");
l1.add("Toys");
l1.add("Horse");
l1.add("Tiger");
// Print the elements
System.out.println(
"The Original Destination list is: ");
for (int i = 0; i < l1.size(); i++) {
System.out.print(l1.get(i) + " ");
}
System.out.println();
// Create source list
List<String> l2 = new ArrayList<>();
// Add elements
l2.add("Bat");
l2.add("Frog");
l2.add("Lion");
// Copy the elements from source to destination
Collections.copy(l1, l2);
// Printing the modified list
System.out.println(
"The Destination List After copying is: ");
for (int i = 0; i < l1.size(); i++) {
System.out.print(l1.get(i) + " ");
}
}
}
Output
The Original Destination list is: Shoes Toys Horse Tiger The Destination List After copying is: Bat Frog Lion Tiger
5. Disjoint Collection
Collections.disjoint() is used to check whether two specified collections have nothing in common. It returns true if the two collections do not have any element in common.
Example:
// Working of Disjoint Function
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
class Geeks {
public static void main(String[] args) {
List<String> l1 = new ArrayList<>();
// Add elements to l1
l1.add("Shoes");
l1.add("Toys");
l1.add("Horse");
l1.add("Tiger");
List<String> l2 = new ArrayList<>();
// Add elements to l2
l2.add("Bat");
l2.add("Frog");
l2.add("Lion");
// Check if disjoint or not
System.out.println(
Collections.disjoint(l1, l2));
}
}
Output
true