Open In App

Filling diagonal to make the sum of every row, column and diagonal equal of 3x3 matrix

Last Updated : 08 Dec, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given 9 elements in a 3 x 3 matrix where the value of diagonals is 0. We need to find the values in the diagonal to make the sum of every row, column, and diagonal equal.

Examples: 

Input: 
0 3 6 
5 0 5
4 7 0
Output: 
6 3 6
5 5 5
4 7 4
Explanation: 
    Now the value of the sum of 
    any row or column is 15

Input: 
0 4 4
4 0 4
4 4 0
Output: 
4 4 4
4 4 4
4 4 4

Approach: 

  • Let's say the diagonal is x, y and z.
  • The value of x will be ( x2, 3 + x3, 2 ) / 2. 
  • The value of z will be ( x1, 2 + x2, 1 ) / 2.
  • The value of y will be ( x + z ) / 2. 

Below is the implementation of the above approach:

Implementation: 

C++
// C++ program to implement
// the above problem

#include <bits/stdc++.h>
using namespace std;

// Function to print the matrix
void print(int arr[3][3])
{
    int i = 0, j = 0;

    for (i = 0; i < 3; i++) {
        for (j = 0; j < 3; j++)
            cout << arr[i][j] << " ";
        cout << endl;
    }
}

// Function to find the diagonal values
void find(int arr[3][3])
{
    arr[0][0] = (arr[1][2] + arr[2][1]) / 2;
    arr[2][2] = (arr[0][1] + arr[1][0]) / 2;
    arr[1][1] = (arr[0][0] + arr[1][1]) / 2;

    // Print the new matrix with diagonals
    cout << "Matrix with diagonals:\n";
    print(arr);
}

// Driver code
int main()
{
    // Initialize all the elements of a matrix
    int arr[3][3] = { { 0, 54, 48 },
                      { 36, 0, 78 },
                      { 66, 60, 0 } };

    cout << "Matrix initially:\n";
    print(arr);

    find(arr);

    return 0;
}
Java
// Java program to implement 
// the above problem 
import java.io.*;

public class GFG
{

// Function to print the matrix 
static void print(int arr[][]) 
{ 
    int i = 0, j = 0; 

    for (i = 0; i < 3; i++)
    { 
        for (j = 0; j < 3; j++) 
            System.out.print( arr[i][j] + " "); 
        System.out.println();
    } 
} 

// Function to find the diagonal values 
static void find(int arr[][]) 
{ 
    arr[0][0] = (arr[1][2] + arr[2][1]) / 2; 
    arr[2][2] = (arr[0][1] + arr[1][0]) / 2; 
    arr[1][1] = (arr[0][0] + arr[1][1]) / 2; 

    // Print the new matrix with diagonals 
    System.out.print( "Matrix with diagonals:\n"); 
    print(arr); 
} 

// Driver code 
public static void main(String args[])
{ 
    // Initialize all the elements of a matrix 
    int arr[][] = { { 0, 54, 48 }, 
                    { 36, 0, 78 }, 
                    { 66, 60, 0 } }; 

    System.out.print( "Matrix initially:\n"); 
    print(arr); 

    find(arr); 
} 
}

// This code is contributed by Arnab Kundu
Python3
# Python3 program to implement
# the above problem

# Function to print the matrix
def print_(arr, n):
    for i in range(n):
        for j in range(n):
            print(arr[i][j], end = " ")
        print("\n", end= "")

# Function to find the diagonal values
def find(arr, n):
    arr[0][0] = (arr[1][2] + arr[2][1]) // 2
    arr[2][2] = (arr[0][1] + arr[1][0]) // 2
    arr[1][1] = (arr[0][0] + arr[1][1]) // 2
    print("\nMatrix with diagonals:")
    print_(arr, n)

# Driver code
arr = [[0, 54, 48],
       [36, 0, 78],
       [66, 60, 0]]

n = 3
print("Matrix initially:")
print_(arr, n)
find(arr, n)

# This code is contributed by Shrikant13
C#
// C# program to implement 
// the above problem 
using System;

class GFG 
{ 

    // Function to print the matrix 
    static void print(int [,]arr) 
    { 
        int i = 0, j = 0; 
    
        for (i = 0; i < 3; i++) 
        { 
            for (j = 0; j < 3; j++) 
                Console.Write( arr[i, j] + " "); 
                
            Console.WriteLine(); 
        } 
    } 
    
    // Function to find the diagonal values 
    static void find(int [,]arr) 
    { 
        arr[0, 0] = (arr[1, 2] + arr[2, 1]) / 2; 
        arr[2, 2] = (arr[0, 1] + arr[1, 0]) / 2; 
        arr[1, 1] = (arr[0, 0] + arr[1, 1]) / 2; 
    
        // Print the new matrix with diagonals 
        Console.Write( "Matrix with diagonals:\n"); 
        print(arr); 
    } 
    
    // Driver code 
    public static void Main() 
    { 
        // Initialize all the elements of a matrix 
        int [,]arr = { { 0, 54, 48 }, 
                        { 36, 0, 78 }, 
                        { 66, 60, 0 } }; 
    
        Console.Write( "Matrix initially:\n"); 
        print(arr); 
    
        find(arr); 
    } 
} 

// This code is contributed by Ryuga
PHP
<?php
// PHP program to implement
// the above problem Function
// to print the matrix
function printt( $arr)
{
    $i = 0;
    $j = 0;

    for ($i = 0; $i < 3; $i++) 
    {
        for ($j = 0; $j < 3; $j++)
            echo $arr[$i][$j], " ";
        echo "\n";
    }
}

// Function to find the diagonal values
function find( $arr)
{
    $arr[0][0] = ($arr[1][2] + $arr[2][1]) / 2;
    $arr[2][2] = ($arr[0][1] + $arr[1][0]) / 2;
    $arr[1][1] = ($arr[0][0] + $arr[1][1]) / 2;

    // Print the new matrix with diagonals
    echo "Matrix with diagonals:\n";
    printt($arr);
}

// Driver code

// Initialize all the elements of a matrix
$arr =array(array( 0, 54, 48 ),
        array( 36, 0, 78 ),
        array( 66, 60, 0 ));

echo "Matrix initially:\n";
printt($arr);

find($arr);

#This Code is contributed by ajit..
?>
JavaScript
<script>
// Java script program to implement
// the above problem

// Function to print the matrix
function print(arr)
{
    let i = 0, j = 0;

    for (i = 0; i < 3; i++)
    {
        for (j = 0; j < 3; j++)
            document.write( parseInt(arr[i][j]) + " ");
        document.write("<br>");
    }
}

// Function to find the diagonal values
function find(arr)
{
    arr[0][0] = (arr[1][2] + arr[2][1]) / 2;
    arr[2][2] = (arr[0][1] + arr[1][0]) / 2;
    arr[1][1] = (arr[0][0] + arr[1][1]) / 2;

    // Print the new matrix with diagonals
    document.write( "Matrix with diagonals:<br>");
    print(arr);
}

// Driver code

    // Initialize all the elements of a matrix
    let arr = [[ 0, 54, 48 ],
                    [36, 0, 78 ],
                    [ 66, 60, 0 ]];

    document.write( "Matrix initially:<br>");
    print(arr);

    find(arr);

// This code is contributed by sravan kumar Gottumukkala
</script>

Output
Matrix initially:
0 54 48 
36 0 78 
66 60 0 
Matrix with diagonals:
69 54 48 
36 34 78 
66 60 45 

Complexity Analysis:

  • Time Complexity: O(1), the code will run in a constant time.
  • Auxiliary Space: O(1), no extra space is required, so it is a constant.

Next Article
Practice Tags :

Similar Reads