K’th Smallest Element in Unsorted Array
Given an array arr[] of N distinct elements and a number K, where K is smaller than the size of the array. Find the K'th smallest element in the given array.
Examples:
Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3
Output: 7Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 4
Output: 10
Table of Content
[Naive Approach] Using Sorting - O(n log(n)) time and O(1) auxiliary space:
The very basic approach is to sort the given array and return the element at the index K - 1.
Below is the Implementation of the above approach:
// C++ program to find K'th smallest element
#include <bits/stdc++.h>
using namespace std;
// Function to return K'th smallest element in a given array
int kthSmallest(int arr[], int N, int K)
{
// Sort the given array
sort(arr, arr + N);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int N = sizeof(arr) / sizeof(arr[0]), K = 2;
// Function call
cout << "K'th smallest element is "
<< kthSmallest(arr, N, K);
return 0;
}
// C program to find K'th smallest element
#include <stdio.h>
#include <stdlib.h>
// Compare function for qsort
int cmpfunc(const void* a, const void* b)
{
return (*(int*)a - *(int*)b);
}
// Function to return K'th smallest
// element in a given array
int kthSmallest(int arr[], int N, int K)
{
// Sort the given array
qsort(arr, N, sizeof(int), cmpfunc);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver's code
int main()
{
int arr[] = { 12, 3, 5, 7, 19 };
int N = sizeof(arr) / sizeof(arr[0]), K = 2;
// Function call
printf("K'th smallest element is %d",
kthSmallest(arr, N, K));
return 0;
}
// Java code for Kth smallest element
// in an array
import java.util.Arrays;
import java.util.Collections;
class GFG {
// Function to return K'th smallest
// element in a given array
public static int kthSmallest(Integer[] arr, int K)
{
// Sort the given array
Arrays.sort(arr);
// Return K'th element in
// the sorted array
return arr[K - 1];
}
// driver's code
public static void main(String[] args)
{
Integer arr[] = new Integer[] { 12, 3, 5, 7, 19 };
int K = 2;
// Function call
System.out.print("K'th smallest element is "
+ kthSmallest(arr, K));
}
}
# Python3 program to find K'th smallest
# element
# Function to return K'th smallest
# element in a given array
def kthSmallest(arr, N, K):
# Sort the given array
arr.sort()
# Return k'th element in the
# sorted array
return arr[K-1]
# Driver code
if __name__ == '__main__':
arr = [12, 3, 5, 7, 19]
N = len(arr)
K = 2
# Function call
print("K'th smallest element is",
kthSmallest(arr, N, K))
// C# code for Kth smallest element
// in an array
using System;
class GFG {
// Function to return K'th smallest
// element in a given array
public static int kthSmallest(int[] arr, int K)
{
// Sort the given array
Array.Sort(arr);
// Return k'th element in
// the sorted array
return arr[K - 1];
}
// driver's program
public static void Main()
{
int[] arr = new int[] { 12, 3, 5, 7, 19 };
int K = 2;
// Function call
Console.Write("K'th smallest element"
+ " is " + kthSmallest(arr, K));
}
}
// Simple Javascript program to find K'th smallest element
// Function to return K'th smallest element in a given array
function kthSmallest(arr, N, K)
{
// Sort the given array
arr.sort((a,b) => a-b);
// Return k'th element in the sorted array
return arr[K - 1];
}
// Driver program to test above methods
let arr = [12, 3, 5, 7, 19];
let N = arr.length, K = 2;
console.log("K'th smallest element is " + kthSmallest(arr, N, K));
<?php
// Simple PHP program to find
// K'th smallest element
// Function to return K'th smallest
// element in a given array
function kthSmallest($arr, $N, $K)
{
// Sort the given array
sort($arr);
// Return k'th element
// in the sorted array
return $arr[$K - 1];
}
// Driver's Code
$arr = array(12, 3, 5, 7, 19);
$N =count($arr);
$K = 2;
// Function call
echo "K'th smallest element is ", kthSmallest($arr, $N, $K);
?>
Output
K'th smallest element is 5
Time Complexity: O(N log N)
Auxiliary Space: O(1)
[Expected Approach] Using Priority Queue(Max-Heap) - O(N * log(K)) time and O(K) auxiliary space:
The intuition behind this approach is to maintain a max heap (priority queue) of size K while iterating through the array. Doing this ensures that the max heap always contains the K smallest elements encountered so far. If the size of the max heap exceeds K, remove the largest element this step ensures that the heap maintains the K smallest elements encountered so far. In the end, the max heap's top element will be the Kth smallest element.
Code Implementation:
#include <bits/stdc++.h>
using namespace std;
// Function to find the kth smallest array element
int kthSmallest(int arr[], int N, int K)
{
// Create a max heap (priority queue)
priority_queue<int> pq;
// Iterate through the array elements
for (int i = 0; i < N; i++) {
// Push the current element onto the max heap
pq.push(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.pop();
}
// Return the Kth smallest element (top of the max heap)
return pq.top();
}
// Driver's code:
int main()
{
int N = 10;
int arr[N] = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
cout << "Kth Smallest Element is: "
<< kthSmallest(arr, N, K);
}
import java.util.PriorityQueue;
public class KthSmallestElement {
// Function to find the kth smallest array element
public static int kthSmallest(int[] arr, int N, int K) {
// Create a max heap (priority queue)
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
// Iterate through the array elements
for (int i = 0; i < N; i++) {
// Push the current element onto the max heap
pq.offer(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.poll();
}
// Return the Kth smallest element (top of the max heap)
return pq.peek();
}
// Driver's code:
public static void main(String[] args) {
int N = 10;
int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
System.out.println("Kth Smallest Element is: " + kthSmallest(arr, N, K));
}
}
import heapq
# Function to find the kth smallest array element
def kthSmallest(arr, K):
# Create a max heap (priority queue)
max_heap = []
# Iterate through the array elements
for num in arr:
# Push the negative of the current element onto the max heap
heapq.heappush(max_heap, -num)
# If the size of the max heap exceeds K, remove the largest element
if len(max_heap) > K:
heapq.heappop(max_heap)
# Return the Kth smallest element (top of the max heap, negated)
return -max_heap[0]
# Driver's code:
if __name__ == "__main__":
arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10]
K = 4
# Function call
print("Kth Smallest Element is:", kthSmallest(arr, K))
using System;
using System.Collections.Generic;
public class KthSmallestElement
{
// Function to find the kth smallest array element
public static int KthSmallest(int[] arr, int K)
{
// Create a max heap (priority queue) using a SortedSet
var maxHeap = new SortedSet<int>(Comparer<int>.Create((a, b) => b.CompareTo(a)));
// Iterate through the array elements
foreach (var num in arr)
{
// Add the current element to the max heap
maxHeap.Add(-num);
// If the size of the max heap exceeds K, remove the largest element
if (maxHeap.Count > K)
maxHeap.Remove(maxHeap.Max);
}
// Return the Kth smallest element (top of the max heap)
return -maxHeap.Max;
}
// Driver's code:
public static void Main()
{
int[] arr = { 10, 5, 4, 3, 48, 6, 2, 33, 53, 10 };
int K = 4;
// Function call
Console.WriteLine("Kth Smallest Element is: " + KthSmallest(arr, K));
}
}
// Function to find the kth smallest array element
function kthSmallest(arr, K) {
// Create a max heap (priority queue)
let pq = new MaxHeap();
// Iterate through the array elements
for (let i = 0; i < arr.length; i++) {
// Push the current element onto the max heap
pq.push(arr[i]);
// If the size of the max heap exceeds K, remove the largest element
if (pq.size() > K)
pq.pop();
}
// Return the Kth smallest element (top of the max heap)
return pq.top();
}
// MaxHeap class definition
class MaxHeap {
constructor() {
this.heap = [];
}
push(val) {
this.heap.push(val);
this.heapifyUp(this.heap.length - 1);
}
pop() {
if (this.heap.length === 0) {
return null;
}
if (this.heap.length === 1) {
return this.heap.pop();
}
const root = this.heap[0];
this.heap[0] = this.heap.pop();
this.heapifyDown(0);
return root;
}
top() {
if (this.heap.length === 0) {
return null;
}
return this.heap[0];
}
size() {
return this.heap.length;
}
heapifyUp(index) {
while (index > 0) {
const parentIndex = Math.floor((index - 1) / 2);
if (this.heap[parentIndex] >= this.heap[index]) {
break;
}
this.swap(parentIndex, index);
index = parentIndex;
}
}
heapifyDown(index) {
const leftChildIndex = 2 * index + 1;
const rightChildIndex = 2 * index + 2;
let largestIndex = index;
if (
leftChildIndex < this.heap.length &&
this.heap[leftChildIndex] > this.heap[largestIndex]
) {
largestIndex = leftChildIndex;
}
if (
rightChildIndex < this.heap.length &&
this.heap[rightChildIndex] > this.heap[largestIndex]
) {
largestIndex = rightChildIndex;
}
if (index !== largestIndex) {
this.swap(index, largestIndex);
this.heapifyDown(largestIndex);
}
}
swap(i, j) {
[this.heap[i], this.heap[j]] = [this.heap[j], this.heap[i]];
}
}
// Driver's code:
const arr = [10, 5, 4, 3, 48, 6, 2, 33, 53, 10];
const K = 4;
// Function call
console.log("Kth Smallest Element is: " + kthSmallest(arr, K));
Output
Kth Smallest Element is: 5
Time Complexity: O(N * log(K)), The approach efficiently maintains a container of the K smallest elements while iterating through the array, ensuring a time complexity of O(N * log(K)), where N is the number of elements in the array.
Auxiliary Space: O(K)
[QuickSelect] Works best in Practice:
The algorithm is similar to QuickSort. The difference is, instead of recurring for both sides (after finding pivot), it recurs only for the part that contains the k-th smallest element. The logic is simple, if index of the partitioned element is more than k, then we recur for the left part. If index is the same as k, we have found the k-th smallest element and we return. If index is less than k, then we recur for the right part. This reduces the expected complexity from O(n log n) to O(n), with a worst-case of O(n^2).
function quickSelect(list, left, right, k)
if left = right
return list[left]
Select a pivotIndex between left and right
pivotIndex := partition(list, left, right,
pivotIndex)
if k = pivotIndex
return list[k]
else if k < pivotIndex
right := pivotIndex - 1
else
left := pivotIndex + 1
Please refer Quickselect for implementation,
Time Complexity : O(n^2) in the worst case, but on average works in O(n Log n) time and performs better than priority queue based algorithm.
Auxiliary Space : O(n) for recursion call stack in worst case. On average : O(Log n)
[Other Approach] Using Counting Sort (Not efficient for large range of elements)
Counting sort is a linear time sorting algorithm that counts the occurrences of each element in an array and uses this information to determine the sorted order. The idea behind using counting sort to find the K'th smallest element is to use the counting phase, which essentially calculates the cumulative frequencies of elements. By tracking these cumulative frequencies, we can efficiently determine the K'th smallest element.
Note: This approach is particularly useful when the range of elements is small, this is because we are declaring a array of size maximum element. If the range of elements is very large, the counting sort approach may not be the most efficient choice.
Code Implementation:
#include <iostream>
using namespace std;
// This function returns the kth smallest element in an array
int kthSmallest(int arr[], int n, int k) {
// First, find the maximum element in the array
int max_element = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max_element) {
max_element = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int freq[max_element + 1] = {0};
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements
// in the input array
int count = 0;
for (int i = 0; i <= max_element; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
int main() {
int arr[] = {12,3,5,7,19};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
cout << "The " << k << "th smallest element is " << kthSmallest(arr, n, k) << endl;
return 0;
}
import java.util.Arrays;
public class GFG {
// This function returns the kth smallest element in an
// array
static int kthSmallest(int[] arr, int n, int k)
{
// First, find the maximum element in the array
int max_element = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > max_element) {
max_element = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int[] freq = new int[max_element + 1];
Arrays.fill(freq, 0);
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of
// elements in the input array
int count = 0;
for (int i = 0; i <= max_element; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
public static void main(String[] args)
{
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.length;
int k = 2;
System.out.println("The " + k
+ "th smallest element is "
+ kthSmallest(arr, n, k));
}
}
# Python3 code for kth smallest element in an array
# function returns the kth smallest element in an array
def kth_smallest(arr, k):
# First, find the maximum element in the array
max_element = max(arr)
# Create a dictionary to store the frequency of each
# element in the input array
freq = {}
for num in arr:
freq[num] = freq.get(num, 0) + 1
# Keep track of the cumulative frequency of elements
# in the input array
count = 0
for i in range(max_element + 1):
if i in freq:
count += freq[i]
if count >= k:
# If we have seen k or more elements,
# return the current element
return i
return -1
# Driver Code
arr = [12, 3, 5, 7, 19]
k = 2
print("The", k,"th smallest element is", kth_smallest(arr, k))
using System;
public class GFG {
// This function returns the kth smallest element in an array
static int KthSmallest(int[] arr, int n, int k) {
// First, find the maximum element in the array
int maxElement = arr[0];
for (int i = 1; i < n; i++) {
if (arr[i] > maxElement) {
maxElement = arr[i];
}
}
// Create an array to store the frequency of each
// element in the input array
int[] freq = new int[maxElement + 1];
for (int i = 0; i < n; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements
// in the input array
int count = 0;
for (int i = 0; i <= maxElement; i++) {
if (freq[i] != 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements,
// return the current element
return i;
}
}
}
return -1;
}
// Driver Code
static void Main(string[] args) {
int[] arr = { 12, 3, 5, 7, 19 };
int n = arr.Length;
int k = 2;
Console.WriteLine("The " + k + "th smallest element is " + KthSmallest(arr, n, k));
}
}
// Function to find the kth smallest element in an array
function kthSmallest(arr, k) {
// First, find the maximum element in the array
let maxElement = arr[0];
for (let i = 1; i < arr.length; i++) {
if (arr[i] > maxElement) {
maxElement = arr[i];
}
}
// Create an array to store the frequency of each element in the input array
let freq = new Array(maxElement + 1).fill(0);
for (let i = 0; i < arr.length; i++) {
freq[arr[i]]++;
}
// Keep track of the cumulative frequency of elements in the input array
let count = 0;
for (let i = 0; i <= maxElement; i++) {
if (freq[i] !== 0) {
count += freq[i];
if (count >= k) {
// If we have seen k or more elements, return the current element
return i;
}
}
}
return -1; // kth smallest element not found
}
// Driver code
const arr = [12, 3, 5, 7, 19];
const k = 2;
console.log(`The ${k}th smallest element is ${kthSmallest(arr, k)}`);
Output
The 2th smallest element is 5
Time Complexity: O(N + max_element), where max_element is the maximum element of the array.
Auxiliary Space: O(max_element)
Related Articles: