A different version that automatically skips the dots if they're not needed.
\documentclass{article}
\usepackage{amsmath}
\usepackage{xparse}
\ExplSyntaxOn
\NewDocumentCommand{\repsum}{O{3}mmm}
{% #1 = optional number of starting summands
% #2 = final number
% #3 = first symbol
% #4 = second symbol
\int_compare:nTF { #2 - #1 < 3 }
{% no dots necessary
#3\sb{1}#4\sb{1}
\int_step_inline:nnn { 2 } { #2 } { + #3\sb{##1}#4\sb{##1} }
}
{
\int_step_inline:nn { #1 } { #3\sb{##1}#4\sb{##1} + }
\dotsb
\int_step_inline:nnn { #2 - 1} { #2 } { + #3\sb{##1}#4\sb{##1} }
}
}
\ExplSyntaxOff
\begin{document}
First test: $\repsum{9}{F}{u}$
Second test: $\repsum[2]{6}{F}{u}$
Third test: $\repsum{5}{F}{u}$
Fourth test: $\repsum{3}{F}{u}$
Fifth test: $\repsum{2}{F}{u}$
Sixth test: $\repsum{1}{F}{u}$
The CUF Refined theory expands the summation as
\begin{equation}
u=\repsum{9}{F}{u}=F_\tau u_\tau
\end{equation}
where the last expression exploits the Einstein notation.
\end{document}

