Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr;21(4):517-24.
doi: 10.1118/1.597177.

Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network

Affiliations

Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network

W Zhang et al. Med Phys. 1994 Apr.

Abstract

A computer-aided diagnosis (CAD) scheme has been developed in our laboratory for the detection of clustered microcalcifications in digital mammograms. In this study, we apply a shift-invariant neural network to eliminate false-positive detections reported by the CAD scheme. The shift-invariant neural network is a multilayer back-propagation neural network with local, shift-invariant interconnections. The advantage of the shift-invariant neural network is that the result of the network is not dependent on the locations of the clustered microcalcifications in the input layer. The neural network is trained to detect each individual microcalcification in a given region of interest (ROI) reported by the CAD scheme. A ROI is classified as a positive ROI if the total number of microcalcifications detected in the ROI is greater than a certain number. The performance of the shift-invariant neural network was evaluated by means of a jackknife (or holdout) method and ROC analysis using a database of 168 ROIs, as reported by the CAD scheme when applied to 34 mammograms. The analysis yielded an average area under the ROC curve (Az) of 0.91. Approximately 55% of false-positive ROIs were eliminated without any loss of the true-positive ROIs. The result is considerably better than that obtained in our previous study using a conventional three-layer, feed-forward neural network. The effect of the network structure on the performance of the shift-invariant neural network is also studied.

PubMed Disclaimer

Publication types

LinkOut - more resources